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Abstract

The purpose of this study is to enhance the accuracy of numerical wave forecast
with data assimilation. The present paper is to investigate the potential use of the
spectral observations from the pitch-and-roll buoys which supply measurements in near-
real-time for assimilation in an operational forecast system. And how to do optimal
interpolation when we only have one buoy on deep ocean will be discussed in this study.
And then, the impact of the assimilation of those measurements on the wave analysis
and forecast is studied over several typhoon periods in 2006, by comparing runs with
and without assimilation.
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Introduction

Application of data assimilation to operational wave modelling is a quickly
developing subject. It was only a decade ago that first attempts were reported to improve
the wave forecast by correcting the wave field with observation. Since then, the number
of near-real time available wave and wind observations has grown drastically because of
the launch of earth-observing satellites, such as the ERS-1 and ERS-2. With the advent
of the ERS earth-observing satellites, however, global wave observations have become
available in near-real time. This situation has inspired many researchers to investigate
the possibility of including data assimilation methods in their operational wave
forecasting. There are two advantages of assimilating wave observations in a forecast
model. First, assimilation may improve the estimate of the present sea state. In
particular in the case of swell, this will have a beneficial impact on the wave forecast as
well. All presently operational data assimilation schemes are aiming at this goal. The
other advantage of data assimilation stems from the high sensitivity of the wave field to
the forcing winds. In some case studies, promising results have been obtained (de Valk,
1994; de las Heras et al., 1994; Bauer et al., 1996), but as far as the authors are aware,
no systematic improvement of past wind fields has yet been demonstrated under
operational conditions (e.g., Voorrips and de Valk, 1997).

In past decade, the most frequently used operational assimilation schemes are
single-time-level schemes such as optimal interpolation(OI) (e.g., Janssen et al., 1989;
Lionello er al., 1995; Hasselmann et al., 1997; Voorrips et al., 1997). These methods
are computationally fast and therefore easily applicable to on-line wave analysis/
forecasting conditions, but they suffer from some drawbacks. Unfortunately, forecast
errors are often inhomogeneously distributed over the wave spectrum, which limits the
improvement obtained by wave height assimilation alone (Mastenbroek er al., 1994).
Therefore, some groups have taken up the challenge of using the SAR data (Hasselmann
et al., 1997). Although this may turn out to be useful for wave models of the world
ocean, for regional coastal, the density of SAR observations is simply too low to have a
serious impact on the wave analysis. Also, the spatial resolution of the SAR about 100m
is a larger problem for (partly) sheltered seas, where the average wavelengths are
substantially shorter than on the ocean. However, for the regional coastal there is a good
alternative to the SAR data. It is rather densely covered with pitch-and-roll buoys, which
also measure spectral information. Moreover, their spectral characteristics are more
suited to the typical wavelengths encountered, and, since they measure continuously at a
fixed position, they supply more data than satellites for the region.

The aim of the present paper is to investigate the potential use of the spectral
observations from the pitch-and-roll buoys which supply measurements in near-real-
time for assimilation in an operational forecast system. And how to do optimal
interpolation when we only have one buoy on deep ocean will be discussed in this study.
And then, the impact of the assimilation of those measurements on the wave analysis
and forecast is studied over several typhoon periods in 2006, by comparing runs with
and without assimilation.

Spectral Observations from Buoys

The spectral observations from Gagua Ridge buoy is used in doing testing and
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spectral data assimilation. The data is from July 1, 2006 to September 30, 2006. Hualien
buoy is used in verifying the results of simulation.

Observed parameters

The directional spectra can be obtained by analyzing the observed heave, pitch-
and-roll motion of the buoy hull. From these time series, one can determine the one-
dimensional energy-density spectrum F(f) and some information about the directional
distribution of the energy. If one writes the two-dimensional energy density spectrum:

F(f.8)=F(f)D,(8) (1)
D, (8) = %{% +3[a,(f)cos(nd) + bn(f)sin{nﬁ)]} @)
n=|

Only the Fourier components for n=1, 2 of the directional distribution can be
determined from the auto-spectra and cross spectra. For convenience, we will drop the
frequency dependence of the Fourier components a, and b, in the notation below.

One can try to reconstruct the full directional distribution as well as possible
based on only these first four Fourier parameters (Long and Hasselmann, 1979; Lygre
and Krogstad, 1986) or fit the data to an assumed shape (e.g., Longuet-Higgins er al.,
1963). Subsequently, one could assimilate the “retrieved” two-dimensional spectra,
analogous to the way the SAR spectra are assimilated. The disadvantage of this effort is
that, although the obtained spectrum may be “best” according to some criterion, it
suggests much more knowledge about the spectrum than what is actually measured.
Errors in the various components of the “reconstructed” spectrum will necessarily be
strongly correlated, which obscures the comparison with, e.g., a spectrum obtained from
a wave forecast model at the same place and time.

The same objections could be raised to the SAR assimilation procedure. The
nature of the SAR data, however, is quite different from the buoy data. First the SAR
observations themselves are strongly nonlinearly distorted images of the wave spectrum,
so direct assimilation in an optimal interpolation scheme seems impossible here. Second,
the long wave part of the inverted SAR spectrum seems to be only weakly dependent on
external (model first guess) information (Briining and Hasselmann, 1994). Pitch-and-
roll buoys measure the directionality of the wave spectrum relatively crudely, so more
external information has to be added for the low frequencies in an “inversion”
procedure.

Instead of constructing the whole directional spectrum, we use the one-
dimensional energy density spectrum F(f), which is uniquely determined by the first few
Fourier components. Here we distribute wave direction and frequency to several parts.
Partition of buoy data

For the assimilation of pitch-and-roll buoy data, one option is to apply the
original partition scheme to a “reconstructed” full wave spectrum. We, however, prefer
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to use only the truly observed parameters and devise a new partition scheme based on
these data. Of course, the new scheme should stay as close as possible to the
partitioning scheme for the full spectrum. The scheme used the energy-density spectrum
F(f) and the direction #(f). Consider the computer time; we do experiment of
assimilation procedure to get the optimal choice of direction and frequency in the
following.

The Data Assimilation Scheme

Assimilation of wave observations in operational wave forecast models is a
relatively new subject. For a long time, the lack of near-real-time available wave
observations impeded the development of assimilation systems. How can assimilation of
wave observations improve the model performance? Basically, there are two ways. The
first method is to use an extensive data set to optimize the model parameters. In this way,
we improve the wave model itself. Since this is an off-line task, it can be done with
advanced, time-consuming data assimilation techniques.

The second method is to use observations on-line, to draw the modelled sea state
to the observations. In this way, the model analysis and short-term forecasts can
improve. Especially swell forecasts are expected to be improved, since they are not very
sensitive to the quality of forecast wind fields. Since the data assimilation now has to be
done during the operational forecast cycle itself, the method must be not too time
consuming. Simpler assimilation methods are therefore need.

At present, for wave assimilation, as for assimilation in circulation models, there
are two main classes of assimilations: sequential methods and variational methods. The
advantage of sequential method is the relative simplicity and the relatively low
requirement for computer resources. The minimization of the cost function typically
requires a series of runs if the wave model. Consequently, the computer resources
needed are larger than those needed to execute the model itself, while the resources that
are requested by a sequential method are, in comparison, negligible.

Assimilation of wave spectra from pitch-and-roll buoy

The OI-P scheme is described extensively in Hasselmann ef al. (1996) and in
Voorrips et al. (1997). OI-P is a so-called sequential assimilation method. This means
that it is called during the wave model forecast at every time at which new observations
are available; it combines the model state at that time (the first guess) with the new
observations to calculate an analyzed model state: and this analyzed state serves as the
initial condition for a new model run, until a new set of observations is processed, etc.

Two major approximations are made in formulating the OI-P method. The first is
to define pre-calculated (and constant) forecast and observation error covariances,
which are used at every assimilation time step. This distinguishes OI schemes from the
far more costly Kalman filter method, in which the error covariances are explicitly
propagated by the model dynamics. The second approximation is to apply a technique
called spectral partitioning, with which the number of free parameters in a wave
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spectrum is effectively reduced by more than an order of magnitude. With these two
approximations, a scheme can be constructed which is very cost-effective: an
assimilation step takes considerably less time than the propagation of the wave model
between two consecutive assimilation times.

The concept of spectral partition was introduced by Gerling (1992). It is a
method to describe the essential features of a two-dimensional wave variance spectrum
F(f. 0) (f frequency, 0 direction) with only a few parameters. This is done by separating
the spectrum into a small number of distinct segments, so-called partitions, which
correspond to the various "peaks" in the spectrum. The partitioning is a purely formal
procedure; however, the partitions can be interpreted physically as representing
independent wave systems. Details of the formalism used to calculate the partitions can
be found in Hasselmann er al. (1996).

The original partitioning scheme as was devised by Hasselmann et al. (1994,
1996) can only be applied to a full two-dimensional wave spectrum, such as a model
spectrum or an inverted SAR spectrum. Pitch-and-roll buoy data, however, contain only
the one-dimensional wave spectrum £(f), plus limited information about the directional
distribution. To assimilate these data as well, an adapted version of the partitioning
scheme was developed (Voorrips et al., 1997) which needs only E(f) and the wave
propagation direction #/(f) as a function of frequency. Tests with synthetic buoy spectra
which were extracted from full spectra showed very good agreement between the two
partitioning schemes.

The analyzed partition parameters from the optimal interpolation are now
combined with the first-guess spectra to obtain analyzed spectra. Every first-guess
partition is multiplied by a scale factor and shifted in the (£, #) plane such that its mean
parameters are equal to the parameters obtained by the optimal interpolation. Small gaps
in the spectrum which arise by the different shifts for different partitions are filled by
two-dimensional parabolic interpolation.

Therefore, a new assimilation method was developed to assimilate detailed
spectral wave observations:

_ _ i Jlppm i
E(f.6)=Ebf.6)+a, 3w, Zold ‘Q-’J}E’fui‘ﬂ (3)
=1 P

Description of the simulation region

In order to simulation in the model, basic data for the period Nov. 1 to Dec. 15,
2003 (winter monsoon) was used to drive the model. In this case, the domain of the
SWAN wave model covers longitude 100°E to 145°E and latitude 0°N to 45°N, with a
0.5° grid resolution in longitude and latitude (Fig. 1, inset map). The domain of the
wind field data also covers longitude 100°E to 145°E and latitude O°N to 45°N, with a
0.5° grid resolution in longitude and latitude at 1-h resolution.
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Gagua|Ridge Buoy

Fig. 1: Domain of model and buoy stations

In order to simulation wave effectively, we used the nesting scheme on the
simulation region. It means the simulation region is larger, the grid resolution is rougher.
Table 1 shows the domain, grid resolution and time step of model nesting. Because we
focused on the eastern Taiwanese water in this study, we only need the detail wave
information in this region. If the larger region used fine grid resolution, it should need
lots of computer time. For the larger region, its mission is to offer bounder value for the
next layer use.

Adjust the Optimum Parameter of OI-P

Optimal the frequency and direction

The next step in the assimilation procedure is to merge the model first-guess and
observed partition parameters into an analyzed field of parameters. We have assumed
that different partitions within a spectrum are uncorrelated since they are created by
different typhoon events. So, we want to treat these partitions separately from each other
in the assimilation. On the other hand, partitions in different spectra (e.g., model and
observed spectra, or two model spectra at different locations) are correlated if they are
created by the same event. Therefore, we have to define a cross-assignment criterion
between the partitions of two different spectra.

The criterion which is used is based on the distance in spectral space between
the parameters of two partitions. The ones which are closest to each other are cross-
assigned. In case the number of partitions in the observed and model spectra do not
match additional assumptions are needed.
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Table 1: The domain, grid resolution and time step of model nesting

nesting range grid resolution time step
1" layer 110.0°E-140.0°E 10.0'N-40.0°'N Ax=0.250" Ay=0.250" 60 min
2layer | 119.0°E-1250E 20.0°N -27.0°N Ax=0067" Ay=0.067" 30 min
3" layer 121 0°E-123.0°E 21.0°'N 250N Ax=0.020" Ay=0.020" 12 min

When the cross-assignment is done, the parameters of the model and observed
partitions can be combined to obtain an analyzed field of partition parameters. An
important input for the OI-P procedure is the error covariances of the errors in the
observed and the model parameters. The covariances were obtained by calculating long-
term statistics of differences between observations and SWAN model hind casts. The
observation errors were assumed to be spatially independent.

Although we only have one data buoy in the deep ocean, we use the first-guess
spectra of neighbouring grid points of Gagua Ridge buoy as fictitious buoys data.
Compare the wave spectral of assumed stations with field station; we could get the
weight between assumed stations and field station. 3 months buoy data are used in doing
statistic analysis during the process, and then we do OI-P by these wave spectra. The
computer time will be influenced due to the number of direction and frequency.
Therefore, 2 days assimilation in these experiment run is done to get the optimal choice
(Table 2). The results show that the most accurate of model assimilation if we distribute
wave direction to 32 and frequency to 41. But it spends a lot of computer time. In order
to spend the less computer time and get higher accurate, we use 16 directions and 20
frequency for latter assimilation of typhoon events.

Optimal the number of assumed stations

Due to it needs two measured stations at least to do optimal interpolation, but we
only have one Gagua Ridge buoy in this study. Therefore, we have to assumed stations
for optimal interpolation use. Here we set 3 assumed stations, 5 assumed stations, and 7
assumed stations to do numerical test. The average errors of significant wave height and
mean wave period for different assumed stations show in Table 3. It is obvious that the
mote assumed stations, the better accuracy in the model results. But considering the
effective computer work, we choice 5 assumed stations for the following research.

Table 2: SWH RMSE statistics of the various numerical experiments against the data of

Gagua Ridge buoy
Direction B—{—16 32
SWH RMSE(m)
Frequency
10 0.85 0.73 0.71
20 0.77 047 043
41 0.58 0.39 0.34
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Table 3: The average errors of significant wave height and mean wave period for
different assumed stations

Average error 3 assumed stations | 5 assumed stations | 7 assumed stations
H. (cm) 18.7 12.8 10.1
T (566) I 0.7 0.4

Verification of the Results from the Assimilation Run of Buoy Data against Buoy
Observation

The influence of the assimilation on the wave analyses and forecasts was
assessed by running the wave model with assimilation for a period of typhoon events.
Runs were performed with the operational CWB wind field. In case the CWB wind
fields were missing no run was done. These warm-up periods have been removed from
the evaluation.

The main conclusion from that comparison is that the quality of these runs is
comparable so the effect of OI-P assimilation in the SWAN model can be expected to
be of the same order of magnitude as found in the results below which shows in Fig. 2
to Fig. 5. Direction wave spectra, one-dimensional spectra, and significant wave height
are shows that assimilation run is closed to measurements. The reference run is lower
than measurements. Fig. 2 shows the direction wave spectra at Hualien buoy for July 26,
2006, 0SUT. The wave direction and wave energy in Fig. 3a is close to Fig. 3b. Fig. 4
shows the spectra at Hualien buoy for July 26, 2006, 05UT, and September 15, 2006,
ISUT. We merge the spectra during assimilation procedure, so the wave spectra are
similar after model assimilation. From the SWH time series and MWP time series (show
in Fig. 4 to Fig. 5), the results show that model has great improve with data assimilation.
The hind cast results always can’t calculate the peak value or can’t calculate the peak
value at the right time if without data assimilation. Therefore, the data assimilation has
good performance in SWAN wave model simulate.

Statistical Results over the Typhoon Periods

Compare OI-P scheme with OI-I scheme

We did a comparison of OI-P and OI-I analyzed wave spectra and significant
wave height with measurements from the buoy. For the comparison the region is defined.
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Fig. 2: Direction wave spectra at Hualien buoy for July 26, 2006, O5UT. (a) buoy
observation, (b) assimilation run, and (c) reference run.
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Fig. 3: Spectra at Hualien buoy for July 24, 2006, 05UT, and September 15, 2006, I5UT.
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Comparison with both buoys shows OI-I scheme is overestimation than OI-P
scheme. Differences between the results of OI-P are smaller than those OI-I scheme.
And compare with buoy measurements, the OI-P scheme are more close to buoy
measurements. This is not surprising, since the calibration of the ENVISAT winds has
been obtained by a comparison with measurements from the same buoy. One way 1o
explain the apparent discrepancy is the assumption that the model wind speed error is
not homogeneous over the analysis areas in this relatively short period. The altimeter
data is not continuous. But the wind speed change very fast during typhoon period.
There is not enough data are available to make a reliable validation of the altimeter
wind speed algorithms.

Statistical of the different assimilation scheme

The results of the analysis/forecast runs over the typhoon events have been
validated against measurements of data buoy. Table 4 compare the OI-I scheme with the
OI-P scheme. in terms of the root mean square error (RMSE).

Five parameters are compared: significant wave height (H,), low-frequency
significant wave height (H;;). mean wave period (T,), mean wave direction (#,,). and
wind speed ;. For all the times the ratio of the RMSE of OI-P scheme and the RMSE
of OI-1 scheme are given, expressing the relative impact of the assimilation on the
analysis and forecast.

For different locations and wave parameters, the performance of the OI-1 and OI-
P is comparable. The main difference is the larger RMSE in wave height and period
between OI-P scheme and OI-1 scheme. The RMSE of the wind speed compared to
observations is not too much difference due to wind speed have corrected before
assimilation.

In the period considered, the impact of the assimilation on the forecast is seen up
to around 12 hours. This is a shorter period than reported both for OI-I and for OI-P.
Probably, the impact is relatively small because in this period, wind sea was in general
the dominating wave system. In periods in which swell is of more importance, the
impact period is longer.

Both schemes also correct the wind speed during the assimilation. The
correction does not lead to a significant improvement or deterioration of the model wind
compared to the buoy observations. The impact of ENVISAT assimilation in addition to
the assimilation of buoy observations turned out to be negligible in the comparison with
the buoy observations. This is to be expected, since especially in the neighbourhood of
the buoys, the influence of the buoy measurements is much larger than the ENVISAT
observations, which are sparse and often far away from the buoy location.

Conclusions and OQutlooks

A spectral wave data assimilation scheme is presented which based on the wave
spectrum into separate wave systems and subsequent optimal interpolation of wave
partitions. The assimilation experiments at the eastern Taiwan show an improvement the
sea state analysis.
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In order to optimal the number of frequency and direction, numerical results
show that 16 directions and 20 frequency is the optimal choice for data assimilation. In
order to do optimal interpolation of wave spectral, we need to assumed stations. When
the number of assumed stations is greater than 5 stations, the error tends to stability.

Table 4: RMSE statistics of the various numerical experiments against the data of
Gagua Ridge buoy during typhoon Kaemi and typhoon Shanshan

Parameter Ol -P scheme Ol -I scheme OI -P scheme OI -1 scheme
H, 0.11 m 041 m 0.07 m 0.76 m
Hy 0.09 m 0.33m 0.06 m 0.67 m
T 045 I ) 04s 4.8 ¢
a2, 7.3 deg 30.2 deg 6.7 deg 45.5 deg
Uy 1.92 m/s 3.52 m/s 1.28 m/s 3.96 m/s

Using altimeter data to do data assimilation, the results can improve the
boundary values. It means the results can offer better boundary values for nesting using.

Compare OI-P scheme with Ol-1 scheme; OI-P scheme has better performance in
the wave hindcast.

In the near future, the present scheme will be tested further in an operational
forecasting setting. Various improvements on the scheme are under investigation. Better
treatment of non-assigned partitions may prevent discarding valuable observations.
Furthermore, it should be relatively straightforward to merge the OI-I and OI-P
approaches in order to handle both spectral and integral observations simultaneously.
Finally, research will concentrate on the incorporation of the model dynamics in the
assimilation procedure.
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