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The wavelet transform (WT) is now recognized as a useful, flexible, and efficient technique to analyze

intermittent, non-stationary and inhomogeneous signals as well as images which are obtained from

experimental or in situ measurements. In this study, the two-dimensional continuous wavelet

transform (2-D CWT) was introduced to analyze the spatial image of waves. The numerical algorithm of

2-D CWT was developed and testified in simulated wave field of regular and random waves. Some more

simulated wave fields of various wave conditions and sea bed slopes were then assumed to verify the

analytical accuracy of this new technique. The comparisons of estimations to theoretical values for

several wave parameters show that the 2-D CWT is capable of identifying the directional spectra and

wave properties in shallow water.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Ocean waves have attracted considerable attentions through-
out history. In the present day, the mechanism of wave formation
and the way that waves travel across the coastal ocean is still not
fully understood. Wave measurements always play an important
role on evaluating and describing wave characteristics. It can be
broadly classified into two categories: in situ measurement and
remote sensing. Most in situ measurements record time variation
of waves at fixed points, nevertheless remote sensing focuses on
spatial distinction over a broader area. Many studies on applying
remote sensing to ocean wave measurement have been done since
the 1960s (Pidgeon, 1968; Valenzuela and Laing, 1970; Alpers and
Rufenach, 1981; Lee et al., 1996). Land-based radar is one of
prevalent systems on observing ocean waves and has been shown
that it is possible to obtain reliable data of wave characteristics
after comparing with corresponding buoy data (Borge and Soares,
2000).

In order to derive wave information from radar images, the
temporal and spatial evolution of the radar backscatter informa-
tion of the sea surface were analyzed by means of a Fourier
transform (FT) analysis, where spatial homogeneity and temporal
stationarity within the observed area and period were assumed.
However, it is a fact that most real signals in nature are non-
stationary and inhomogeneous; so are wave signals. That is, the
ll rights reserved.
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statistical properties of a wave field covered with a wide range
frequency and wavenumber components always change with time
and space. Obviously, the FT is not acceptable to be employed in
analyzing such signals, because it does not possess the property of
locality inherent to these signals. Comparatively, the wavelet
transform (WT) adopts localized functions to better reflect the
properties of time- and space-dependent signals.

The WT is now recognized as a useful, flexible, and efficient
technique to analyze intermittent, non-stationary and inhomoge-
neous signals as well as images which are obtained from
experimental or in situ measurements. It has been applied to
solve a variety of engineering problems and almost every corner of
physics. However, the implementations of WT in one dimension
(signal analysis) and in two dimensions (image processing) are
quite different. Massel (2001) revealed that WT is capable of
analyzing one-dimensional wave signals. Carlson (1995) applied
two-dimensional WT to reduce noise and enhance the appearance
of individual wave structures in a SAR image of the ocean surface.
Niedermeier et al. (2002) used a wavelet edge detection method
on the SAR image and used a region-growing approach to examine
the wave groupiness.

It is the purpose of this article to develop a procedure for
implementing the two-dimensional continuous WTs (2-D CWT)
for the applications of digital radar image analysis. In those
applications, the wavenumber spectra representing each spatial
wave field should be first derived by 2-D CWT, because they are
one of the useful ways to describe wave features in the spatial
frequency domain (Doong et al., 2003). For examples, the wave
directional distribution, wave height, wavelength (wavenumber),
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wave period as well as frequency spectrum, transformed from the
wavenumber spectrum based on the linear wave theory (Borge
and Soares, 2000), could then be derived. In this paper we only
discussed the accuracy variations of estimated wave directions
and wavenumbers which were figured out by 2-D CWT at
different locations of wave field on a slowly varying topography.
2. Theoretical preliminaries

A series {Xt} is called ‘stationary’ if its statistical properties do
not change with time (Priestley, 1991). For a more precise
definition, {Xt} is said to be completely stationary if the joint
probability distribution of {Xt1, Xt2, y, Xtn} is identical to that of
fXt1þk;Xt2þk; :::;Xtnþkg. Similarly, ‘homogeneity’ implies that the
statistical properties do not change with space. The FT can then be
applied to those signals or images, but it loses the capability of
describing all information about the time/space localization of a
Fig. 1. Morlet mother wavelet function shown in space domain in which the parame

imaginary part.

Fig. 2. The real part of Morlet wavelet functions shown in space domain. They are influe

y ¼ 601.
given component. It does not even mention to apply the FT to
wave analysis in non-stationary or/and inhomogeneous situa-
tions. However, this is the problem we always meet when the
land-based radar is chosen to detect the wave features. Nowadays,
the FT has been popularly adopted in image analysis by most of
the commercial radar monitoring systems, but it may be
inadequate to describe the whole wave field by only one
representing wavenumber spectrum. Therefore, we developed a
new tool, based on 2-D CWT, to identify the transition of
wavenumber spectra within a wave field.

There are two essentially different approaches in WT, namely,
the continuous WT (CWT) and the discrete WT (DWT). The CWT
plays the same role as the FT and is mostly used for analysis and
feature detection in signals, whereas the DWT is the analog of
the Discrete Fourier Transform and is more appropriate for data
compression and signal reconstruction (Antoine et al., 2004). In
this paper we used the CWT to detect certain wave characteristics
from a single radar image and to represent its wave field locally in
ter k
*

0 ¼ ð6;0Þ controls the oscillation of wavelet function: (a) real part and (b)

nced by the rotation matrix ry at the angle: (a) y ¼ 0, (b) y ¼ 301, (c) y ¼ 451, and (d)
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both space domain and spatial frequency domain where the
wavenumber in analysis can be changed continuously when
rescaling.

2.1. Two-dimensional continuous wavelet transform

WT is similar to FT in that it breaks signals into their
constituents. However, FT of wave image may wrongly estimate
the original information of space when wave length variances are
not homogenous in the area of interest; wave length changes in
space or has a discontinuity at a specific spot, for examples. That is
because the FT yields information on how much but not where (in
space) the specific wavenumber components exist. WT, on the
other hand, shows more comprehensive changes not only at
spatial frequency domain but at space domain. It breaks the image
into various wavelets which are scaled and shifted versions of a
pre-chosen mother wavelet and allows exceptional localization
both in the space domain via translations of the mother wavelet,
and in the scale (spatial frequency) domain via dilations and
rotations.

Given a two-dimensional spatial image sðx
*
Þ ¼ sðx; yÞ of finite

energy, we could represent the image by

jjsjj2 ¼

Z
R2
jsðx

*
Þj2 d2 x

*
o1. (1)

It means a complex-valued function defined on the real plane R2 is
square integrable. In practice, a black and white image sðx

*
Þwill be
Fig. 4. Relationships between measured spatial samples and wavelet function samples

(Jordan Jr., 1998).

Fig. 3. Morlet mother wavelet function in spatial frequency domain. The energy

peak locates at (kx, ky) ¼ (6,0), because the parameter k
*

0 ¼ ð6;0Þ is assumed in this

case.
represented by a bounded non-negative function. The discrete
values of sðx

*
Þ correspond to the level of gray of each pixel (Antoine

et al., 2004).
The corresponding CWT of sðx

*
Þ with respect to a transformed

mother wavelet C
b
*

;y;a
is

Sðb
*

; y; aÞ ¼
1ffiffiffiffiffiffiffi
CC
p hC

b
*

;y;a
jsðx

*
Þi (2)

in which the complex-valued function C
b
*

;y;a
, localized in space,

must satisfy the admissibility condition:

CC ¼ ð2pÞ2
Z

R2

jĈðk
*

Þj2

j k
*

j2
d2 k

*

o1 (3)

where Ĉ is the FT of C and k
*

is the spatial frequency.
Eq. (2) can also be expressed as:

Sðb
*

; y; aÞ ¼ C�1=2
C a�1

Z
R2
Cnða�1r�yðx

*
� b

*

ÞÞsðx
*
Þd2 x

*
(4)

where Cn is the complex conjugate of the wavelet function C. The
scaling parameter a, a nondimensional scale factor, is related to
the dilated spatial frequency (wavenumber) of the space domain.
The factor a�1 is a normalization which gives all dilated versions
of the mother wavelet the same energy, i.e., it is the ratio of the
size of the dilated wavelet to the size of the mother wavelet. The
translation parameter b

*

corresponds to the position of the wavelet
as it shifts through the space domain. The rotation matrix ry with
a rotation angle y, which rotates the wavelet in spatial coordi-
nates, is usually defined as:

r�y ¼
cos y sin y

� sin y cos y

� �
; 0pyo2p (5)

To implement Eq. (4), we must choose a mother wavelet
function C first. Since the wave information detected from
radar image is directional, an oriented or directional mother
wavelet must be used such as the well-known and most
commonly used Morlet wavelet. It is a directionally selective
and complex-valued wavelet function and has been popularly
adopted in WT for signal analysis (Barache et al., 1997) as well as
ocean signal analysis (Chien et al., 2002; Huang, 2004). Thus, a
two-dimensional Morlet mother wavelet function, defined in
Eq. (6), and its function in Fourier space, defined in Eq. (7) (Mujica,
1999), were used throughout the implementation procedures in
this study.

Cðx
*
Þ ¼ e�0:5jA x

*
j2 eðik

*

0�x
*
Þ � e�0:5jA x

*
j2 eð�0:5jA�1 k

*

0j
2Þ (6)
. Nx represents the measured fluctuation sample points and Dx is sampling space
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Ĉðk
*

Þ ¼
ffiffi
�
p
½e�0:5jA�1

ðk
*

�k
*

0Þj
2

� eð�0:5jA�1 k
*

0 j
2Þ e�0:5jA�1 k

*

j2 � (7)

where the parameter k
*

0 is a vector constant that forces the
admissibility condition to be satisfied. It can be found that the
second terms in Eqs. (6) and (7) could be negligible if jk

*

0j is
large enough. Most of cases k

*

0 is chosen in the range bet-
ween (5,0) and (6,0). The matrix A ¼ diag½��0:5;1�, in which �X1, is
an anisotropy matrix. The Morlet wavelet is a direction oriented
complex function. Its real and imaginary parts are shown in
Fig. 1. Its direction is influenced by ry as shown in Fig. 2 to
extract each wave component direction. The distribution of
Morlet wavelet in the spatial frequency domain is illustrated in
Fig. 3.
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Fig. 5. Simulated wave field of regular waves in water of varying depth contour parallel t

the wavelengths get decreasing in shallow water area and the decreasing rates of swel
2.2. Basic properties of the 2-D WT implementation

There are several algorithms to implement Eq. (4). The
simplest method is direct numerical integration. The drawback
is that it is time-consuming. A better solution is to calculate the 2-
D CWT results in Fouier (spectral) space, so Eq. (4) could be
calculated in another expression:

Sðb
*

; y; aÞ ¼ C�1=2
C a

Z
R2
Ĉ

n
ðar�yðk

*

ÞÞei b
*

k
*

ŝðk
*

Þd2 k
*

(8)

in which ŝðk
*

Þ is the FT of sðx
*
Þ

ŝðk
*

Þ ¼ ŝðkx; kyÞ ¼ ð2pÞ�1
Z

R2
sðx
*
Þ e�iðk

*

x
*
Þ d2 x

*
(9)
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~k is the spatial frequency, i.e., the wave number of ocean wave, and
Ĉ

b
*

;y;a
ðk
*

Þ, the FT of C
b
*

;y;a
ð~xÞ, is defined as:

Ĉ
b
*

;y;a
ðk
*

Þ ¼ ae�i b
*

k
*

Ĉðar�yðk
*

ÞÞ (10)

To better explain the results obtained from image processing by
2-D CWT technique, we need to interpret some basic properties in
some detail. Eq. (10) shows that the spatial frequency could be
transformed from k

*

into ar�yðk
*

Þ after scaling, shifting and rotating
a wavelet. As shown in Eq. (7), k

*

0 is the spatial frequency, where
the peak energy locates, of the mother Morlet function in Fourier
space. After transforming, a new location of the peak energy

of the Morlet wavelet function in Fourier space becomes k
*

n. The

relationship between k
*

0 and k
*

n is given as:

k
*

n ¼
k
*

0

ar�y
(11)

On combining the relationship in Eq. (11) and specifying a value
for the shifting parameter b

*

in Eq. (10), we could applied the 2-D
WT to a radar image of ocean waves to recognize the wave energy
change for each wavenumber component at different positions of
wave field.

The wave image for analyzing is always in a digital form. In
order to use the framework of continuous wavelets to analyze
discretely sampled data, it is necessary to sample the analyzing
wavelet (Jordan et al., 1997). A simplified example as shown in
Fig. 4 could be introduced to explain the idea. A physical space
series has sampling space Dx m and total number of sample points
Nx. The total length to be transformed by a 1-D mother wavelet is
NxDx m. The total nondimensional length of mother wavelet is
2X; it is mapped for Nx points. The correspondence between
the dimensional and nondimensional sampling spaces can be
obtained through the relationship (Jordan Jr., 1998):

½�X;X�2½0;NxDx� (12)

Considering the influence of discretely sampled data, Eq. (11)
becomes

k
*

n ¼
k
*

0

ar�y
�

2X

NxDx
(13)

Hence, Eq. (8) could be expressed in the function of x
*

and k
*

n, as
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Eq. (14), after applying the discretely continuous WT on the digital
wave images:

Sðb
*

; y; aÞ ! Sðx
*
; k
*

nÞ (14)

in which, the corresponding wavenumber k
*

n is influenced by the
scaling and rotation of the mother wavelet. The energy distribu-
tion Sðx

*
; k
*

nÞ, representing the wavenumber spectrum Sðk
*

nÞ at
different spatial locations x

*
, is the results that we want to obtain

from the wave field.
3. Wave field image simulation and analysis

To examine the validity of the new technique presented above
and to test the algorithm of computing the 2-D CWT, the following
numerical simulations of wave field images with incident,
refracted and reflected waves in water of varying depth were
performed and discussed.
3.1. Simulation and analysis of wave image of the superposition of

regular waves

A regular wave, propagating along a single direction in the
space domain, could be given by

Zðx; yÞ ¼ a cos k cos axþ k sin ayð Þ (15)

in which a is the wave amplitude, k the wavenumber, and
a the wave direction. Eq. (15) describes the simplest regular
wave. Due to the influences of water depth and coastal structures,
waves would be transformed. Waves that encounter a solid
vertical surface (such as a seawall) will abruptly change their
directions. Sometimes reflection can create very dangerous
conditions when the reflected waves interfere constructively
with the incoming waves. Waves propagating at shallow water
regions gradually change in height as a result of the change in
the rate of the energy flux due to a reduction in the water
depth. Waves may also bend if they approach the beach in an
incident angle.

The equations to simulate wave fields influenced by reflection,
refraction and shoaling are given as (Chang and Hsu, 2003; Chang,
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2002; Horikawa, 1988)

Zðx; yÞ ¼ ai½cosðAþ �iÞ þ KR cosðAþ �i þ �rÞ� (16)

ai ¼ a0 � Ks (17)

Ks ¼ tanhðkhÞ þ
kh

cosh2
ðkhÞ

" #�0:5

(18)
Fig. 8. Wavenumber energy contours, which are projected shadows of wavenumber spe

field image of regular waves. The theoretical wavenumbers are marked by the plus sig

Fig. 7. Simulated wave images of four regular wave components, including incident swe

of varying depth contour parallel to the coast. Six spatial locations in the wave field w
A ¼

Z x

0
ðk cos yÞdxþ k sin yy (19)

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk tanhðkhÞ

p
(20)

in which parameters k and a were defined in Eq. (15). Ks is the
shoaling coefficient, KR the reflection coefficient, ei the phase of
the incident waves, er the phase of the reflected waves, ai the
ctra on the wavenumber plane, estimated by 2-D CWT at six locations of the wave

ns.

ll, incident wind waves, reflected swell and reflected wind wave, which are in water

ere chosen to execute 2-D CWT.
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amplitude of incident waves, and h the water depth. According to
linear wave theory, wave period keeps constant when a train of
simple harmonic wave moves in the region of gradually decreas-
ing water depth. The wavenumber, derived from the relationship
in Eq. (20) at different water depths, can then be substituted into
Eq. (18) and Eq. (19).

A swell system with wave height ¼ 3 m, incident wave
direction ¼ 1351, and wave period ¼ 10 s at deepest water depth
was simulated to propagate in water of varying depth contour
parallel to the coast. The wave field transaction is illustrated in
Fig. 5(a). Another wind wave system with wave height ¼ 1.6 m,
incident wave direction ¼ 2401, and wave period ¼ 6 s at deepest
water depth was also simulated to propagate into shallow water.
The wave field transaction is illustrated in Fig. 5(b). According to
wave theory, the wavelength decreases due to shallow water
depth. Both Fig. 5(a) and (b) did show that longer waves appear at
deeper water depths.

If a solid structure lies to the north of wave field and the
reflection coefficient is KR ¼ 0.5, these new conditions will make
the two above-mentioned wave systems more complicated as
shown in Fig. 6(a) and (b), respectively. In consideration of two
wave systems coexist in the same field as well as the effects of
refraction and reflection, two wave fields in Fig. 6(a) and (b) could
be superimposed to become a new wave field as demonstrated in
Fig. 7. The wave fields will consist of an incident swell, its reflected
component, an incident wind wave, its reflected component, and
the shoaling effects on each component. This case was analyzed
Fig. 9. Accuracy comparison of theoretical values to estimated values of wave directions
by the 2-D CWT to justify the validity and accuracy of the method
and algorithm.

The wavenumber spectra estimated by 2-D CWT at different
locations, marked in Fig. 7, project shadows on the wavenumber
plane to become wavenumber energy contours as shown in Fig. 8.
Each contour corresponds to one wave component and its mirror
one in opposite direction. It means the wave directions are
ambiguous in judging the 1801 difference when a single wave
image is transformed for wavenumber spectrum. The ambiguity
could be eliminated by adopting a series of wave images. There
are four pairs of energy contours corresponding to one incident
swell, its reflected component, one incident wind wave, and its
reflected component at each location. The spectral energy at the
higher wavenumber is more scattered than that at the lower
wavenumber. This is because the higher wavenumber component
has lower resolution in spatial frequency and higher resolution in
space domain. This is known as the Heisenberg Uncertainty
Principle (Van Name, 1960).

Fig. 8 shows that the estimated wavenumber and the estimated
dominant wave direction for each wave component gradually
change at different locations of field. Obviously this is due to wave
refraction. It also shows that the estimated wavenumber and
direction at each peak of energy contour, representing each single
harmonic wave, are consistent with the theoretical values marked
by the plus signs. The simulation, analysis, and discussion above
proved that 2-D CWT is a practicable technique for analyzing wave
field image of regular waves.
and wavenumbers which were derived from 2-D CWT results at different locations.
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To distinguish the capability and evaluate the accuracy
of 2-D CWT, we compared the theoretic values to calculated
values of four wave components at six locations of various water
depths. The comparison is shown in Fig. 9. A reasonably good
agreement is observed for incident swell and wind waves as well
as for their reflected ones when they propagate into shallow
water. The relative errors in wavenumber estimation are less than
5%, except for the analyzing locations near the edge of image. The
discussion above demonstrates that the 2-D CWT has high
accuracy power and capably separates incident and reflected
wave components.

3.2. Simulation and analysis of random wave field image

Ocean waves in nature are random, not regular. The 2-D CWT
algorithm developed above need to be justified in the random
wave field. Hence, several numerical simulations were carried out
for random wave fields, in which a directional spectrum was
assumed.

The full directional spectrum can be represented by (Tucker
and Pitt, 2001)

Sðf ; yÞ ¼ Sðf Þ � Gðf ; yÞ (21)
Fig. 10. Simulated random wave spectrum: (a) 1-D wave spectrum, (b)
where S(f) is the one-dimensional spectrum; G(f, y) is the
directional spreading function which expresses how the energy
at frequency f is distributed by direction of travel.

To simulate the irregular waves propagating in varying water
depths, we chose a TMA-type spectrum for further study. The one-
dimensional spectrum for simulation is defined in Eqs. (22)–(28)
(Goda, 1999):

Sðf Þ ¼ fðkhÞ � Sjðf Þ (22)

fðkhÞ ¼
tanh3

ðkhÞ

tanh ðkhÞ þ ðkhÞ � ðkhÞtanh2
ðkhÞ
¼

tanh2
ðkhÞ

1þ ð2khÞ= sinh ð2khÞ

(23)

Sjðf Þ ¼ bjH
2
1=3T�4

p f�5 exp½�1:25ðTpf Þ�4
�gexp½�ðf=f p�1Þ2=2s2 � (24)

f p ¼
1

Tp
(25)

s ¼
0:07 fpf p

0:09 f4f p

(
(26)
directional spreading function, and (c) directional wave spectrum.
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bj ¼
0:0624

0:230þ 0:0336g� 0:185ð1:9þ gÞ�1

� ½1:094� 0:01915 ln g� (27)

Tp ¼
TH1=3

1� 0:132ðgþ 0:2Þ�0:559
(28)

A Mitsuyasu-type directional distribution was adopted and
defined as:

Gðf ; yÞ ¼ G0 cos2s y� yp

2

� �
(29)

Z p

�p
Gðf ; yÞdy ¼ 1 (30)

G0 ¼
1

p
22s�1 G2ðsþ 1Þ

Gð2sþ 1Þ
(31)

s ¼
smax

f
f p

� �5
fpf p

smax
f

f p

� ��2:5
f4f p

8>><
>>: (32)

Smax ¼ 10 wind waves

Smax ¼ 25 swell with short decay distance

Smax ¼ 75 swell with long decay distance (33)

where yp is the dominant wave direction. The parameter s controls
the angular distribution of waves and is known to vary with
respect to frequency. The spreading parameter Smax changes with
wave conditions as described in Eq. (33).
Fig. 11. Simulated random wave field on a slowing varying topography. Six sp
The irregular wave field can be represented by Eq. (34). The
expression is suitable for a sloped sea bed (Horikawa, 1988):

Zðx; yÞ ¼ amn �
XM=2

m¼�M=2

XN

n¼1

sin

Z x

0
km cos yn dx

�

þkm sin ynyþ �mn

�
(34)

in which emn is a random phase angle. The amplitude amn can be
derived from the assuming directional spectrum as Eq. (35). The
input wavenumber is calculated from the dispersion relationship
in Eq. (36):

amn ¼
XM=2

m¼�M=2

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðom; ynÞDoDy

p
(35)

om ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gkm tanhðkmhÞ

p
(36)

In simulating a random wave field, a directional spectrum as
shown in Fig. 10 was chosen to provide the input condition for
Eq. (35). The supposed directional spectrum represents a swell
system with significant wave height ¼ 2.5 m, mean wave peri-
od ¼ 8 s, dominant wave direction ¼ 451 and Smax ¼ 25, i.e., this is
a swell field with short decay distance. Assuming this wave
system approaches the coast in the water of varying depth
contour parallel to the coast line, the simulated wave field image
could be illustrated in Fig. 11.

By applying the 2-D CWT to the analysis of simulated random
wave field, the 2-D wavenumber spectra for six locations, marked
in Fig. 11, were derived and projected on the wavenumber plane to
become wavenumber energy contours as shown in Fig. 12. It
shows that the wavenumber corresponding to energy contour at
atial locations were chosen to derive the localized wavenumber spectra.
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Fig. 12. Wavenumber energy contours estimated by 2-D CWT at six locations of the wave field image of directional random waves.

Fig. 13. Relative errors of wavenumber spectral energy between the theoretical

values and the evaluations by 2-D CWT at different locations.
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location 1 (deeper water) gradually moves from a lower value to
higher one at location 6 (shallow water), i.e., the wavelengths get
shorter as the swell system approaches the coast. The dominant
wave directions also change with the water depths.

Since the primary input condition of random wave field
simulation is a supposed directional spectrum, the divergence of
spectral energy evaluated by 2-D CWT from the theoretical values
derived by Eq. (22) should be discussed. A comparison of total
energy of each evaluated spectrum (by 2-D CWT) to its theoretical
one is shown in Fig. 13. We found that the relative differences
between the theoretical values and the wavelet results were less
than 10%, except for the locations near the edges of image. These
errors might come from the algorithm, in which we discretized
the continuous WT on analyzing the digital images. The spatial
resolution of wave field image that we measured and the spatial
frequency (wavenumber) resolution of 2-D CWT that we chose
would affect the accuracy of WT results. Fig. 13 also shows a
shortcoming in 2-D CWT analysis. The estimated spectral energy
could be influenced by the distance of location from the image
edge. The accuracy increases with increasing the distance from
the edge.

Fig. 14 shows the comparisons of wavenumbers and wave
directions at six different locations. The difference between
estimated wavenumbers and theoretical values at different
locations are less than 5%, except for the location 1 because of
the edge influence. The estimated wave directions are consistent
with the theoretic values, except for the location 6 of 51 difference.

All discussions above show that the 2-D CWT is capable of
extracting the wavenumber spectrum at any chosen location of
the coastal area of varying water depths from an image of random
wave field. However, the accuracy could be influenced by the
distance from the edge of image. This feature can be explained by
Fig. 15. According to Eq. (2), the WT is seen as the inner product of
the wavelet function and the image function (wave field).
However, the wavelet function is not complete at the locations
of interest near the edge of the image, because its energy
distribution is cut off there. After applying this incomplete
wavelet function to the wave field, the spectrum energy is biased.
4. Discussion

The wave conditions in the cases discussed above is limit. We
need more cases in different wave conditions to verify the
practicability and conclusions we have above are generally
suitable for use in the future. To simulate a random wave field
image, three wave parameters must be assumed, which are wave
period, wave height, and wave direction. We presumed different
wave conditions of nine wave period ranges from 4 to 12 s as well
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Fig. 15. A schematic illustration of a wavelet function performed on the marginal area of an image function. The inner product of the incomplete wavelet function and the

image function provides an incorrect WT energy spectrum.

Fig. 14. Comparison of theoretical wave directions and wavenumbers to estimations at six locations.
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as constant wave height and wave direction progressing in the
same water depth contour. The analyzed results derived by 2-D
CWT are shown together in Fig. 16. The influence of different wave
periods on the accuracy of detecting wavenumber and wave
direction is not so pronounced. The errors in estimating the wave
direction are all less than 31, except the locations near the edge of
image. The relative errors in estimating the wavenumber are all
less 5%, except the edge effect, and the accuracy does not
obviously change with wave periods and locations. This accuracy
level is sufficient to be applied to the analysis in ocean and coastal
engineering applications.

In consideration of the refraction effect relying on sea bed
slope, we also discussed the influence of different sea bed slopes
on estimating wave parameters. We assumed each wave system,
in the same wave conditions, travels on different sea bed slopes of
10 ranges from 0.01 to 0.1. The analyzed results derived by 2-D
CWT are shown together in Fig. 17. The influence of different sea
bed slopes on the accuracy of detecting wavenumber and wave
direction is not so pronounced. The errors in estimating the wave
direction are all less than 41, except the locations near the edges of
image. The accuracy does not obviously change with the slope.
Most of the relative errors for wavenumber calculation are less
than 75%, except the location 6, and the accuracy does not
obviously change with the slope, either. The discussion shows that
2-D CWT could be utilized to estimate the directional spectrum
and wave parameters in most of coastal area.
5. Conclusions

Ocean wave measurement is a very important research topic in
ocean engineering/science. Land-based radar is one of prevailing
systems on observing ocean waves and has the capability on
obtaining reliable wave information. Nowadays, most of the
commercial radar monitoring systems utilize the 2-D FT to
analyze the radar images by assuming the wave field is
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Fig. 17. Estimation errors of wave directions and wave numbers against locations for different sea bed slopes.

Fig. 16. Estimation errors of wave directions and wave numbers against locations for different wave periods.

L.Z.H. Chuang et al. / Ocean Engineering 35 (2008) 1039–10511050
homogenous. This assumption may be acceptable in deep water
field, but it might mislead the acknowledging of wave features
distribution in coastal area or wave–current interaction area.
Therefore, a new technique based on the two-dimensional
continuous wavelet transform (2-D CWT) was developed in this
research to represent a wave field locally in both space domain
and spatial frequency domain. The required theories of 2-D CWT
were collected, defined and explained how its variables related to
ocean waves. The relationship between the energy spectra derived
by WT and wavenumber spectra of random waves was then
derived.

A spatial image of regular waves was simulated, in which one
swell and one wind wave coexist and both waves propagate and
reflect in water of varying depth contour parallel to the coastline.
The simulated wave field was then analyzed by 2-D CWT to derive
2-D wavenumber spectra at distinct spatial locations. It shows
that the estimated wavenumbers and directions are consistent
with the input conditions. The quantitative comparisons also
show that the 2-D CWT has high accuracy power and capably
separates incident and reflected wave components even in
shallow water.

Ocean waves in nature are random. Hence, several numerical
simulations were carried out for random wave fields, in which a
directional spectrum was assumed, to justify the feasibility of 2-D
CWT. We concluded that the 2-D CWT is capable of extracting the
wavenumber spectrum at any chosen location of the coastal area
of varying water depths from an image of random wave field. And
then some more different wave conditions were simulated to
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verify the accuracy of 2-D CWT in various sea bed slopes. It shows
that the accuracy level is sufficient to apply the 2-D CWT to the
analysis on ocean and coastal engineering applications.

This study also shows a shortcoming in 2-D CWT analysis. The
estimated spectral energy and the accuracy of detecting wave
parameters are influenced by the distance of analyzing location
from the image edge. The accuracy increases with increasing the
distance from the edge.

Now we could conclude that the feasibility of 2-D CWT on
analyzing the wave image of random waves is palpable, even in
the coastal area.
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