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Abstract

Field oceanographic and meteorological data are required for ocean engineering. In response to the requirement of field data, an

operational coastal ocean monitoring network was established around Taiwan coast, including nine deep-water data buoys, one shallow-

water pile station, 10 coastal weather stations and 10 tide stations. Data quality check procedures are necessary to ensure the accuracy of

measurements. This paper presents the data quality check procedures on ocean wave data which includes automatic and manual check

procedures. The checking criteria are derived using statistical theory in this paper. In addition, a sea-state-dependent algorithm is

presented in this study in order to derive checking criteria of time-continuity check. It is showed to have better performance of picking up

suspicious data than using fixed threshold process. This data quality check program is now used on the operational monitoring network.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Taiwan Island locates in the subtropical region, where
severe seas triggered by typhoons in summer seasons often
result into terrible losses of the human life and property in
the coastal areas. In order to forecast the severe sea-state
for coastal hazard mitigation and make correct policy for
coastal area management, the ground truth field data are
required. The Coastal Ocean Monitoring Center (COMC)
was therefore established under the National Cheng Kung
University in 1998 to assist the government to develop and
operate a hydrological monitoring network around Taiwan
coast. Presently, the network consists of nine deep-water
buoy stations, one shallow-water pile station, 10 coast
weather stations and 10 tide stations. The location map of
the stations is shown in Fig. 1. At deep-water buoy station,
a 2.5m wave-following discus buoy is deployed. The buoy
is equipped with a tri-axial accelerometer to measure
front matter r 2006 Elsevier Ltd. All rights reserved.
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surface wave particle movements for the estimation of
directional wave spectrum (Kao et al., 1999). At shallow-
water pile stations located in areas of mild slope and sandy
seabed, an ultrasonic wave gauge array is installed to
provide measurements of sea surface displacements. In
addition, the wind speed, wind direction, air and water
temperatures, barometer pressure are also measured
simultaneously. The in-situ meteorological and oceano-
graphic observations from the network provide the
government with critical information to prepare severe
weather warnings. Long-term data from the network are
used to calibrate and validate marine weather forecasting
models and to develop design criteria for coastal structures.
Data quality control is based on both objective criteria

and human experience. If incorrect or missing measure-
ments are not properly corrected, they may significantly
mislead the weather forecasting and the design conditions
of constructions. The consequences of inaccurate observa-
tions may be more devastating than the lacking of
observations (Gilhousen, 1988). The general data quality
control includes the research and development (R & D) of
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Fig. 1. Locations of coastal ocean monitoring stations around Taiwan.
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monitor technologies, daily data quality check (QC) and
long-term data quality assurance (QA) as shown in Fig. 2.
QC is the regulation of quality performance against set
standards and acting on those whose performance is below
default criteria. It must start from the time the sensors
detect the objectives. QA is the activity and proof showing
that the quality operation is being carried out adequately
and assuring user’s confidence and satisfaction in using the
data. QC and QA monitor the performances of measure-
ment systems, which is useful for scheduling maintenances
and calibrations. R & D is then the improvement of new
monitoring technologies. QC, QA and R & D are highly
correlated and complementary R & D, daily QC and long-
term QA improves the data quality. In this paper, the data
QC procedures are reported.

In general, based on means of execution, the QC
program is divided into automated (labeled as AutoQC)
and manual (labeled as ManuQC) procedures. The
AutoQC uses computer algorithms to examine a large
amount of measurements. The ManuQC is then applied to
the suspicious data identified by the AutoQC for further
check. The algorithms of AutoQC are based on both
objective criteria and subjective experiences. The use of
algorithms by computers can significantly reduce the
manpower that can be dedicated to the ManuQC. Based
on the sequence of execution, AutoQC consists of two
stages. The first stage is to examine raw time series (TSQC),
which includes the default basic check (DBC) and data gap
interpolation (DOC). The second stage is to examine
statistical parameters (SPQC) derived from the raw time
series data, which includes range rationality check (RRC),
variation continuity check (VCC) and physical correlation
check (PPC). This paper describes the development and
application of the algorithms of the AutoQC. The AutoQC
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on the raw time series of wind and wave measurements is
presented in Section 2. Section 3 describes the AutoQC on
the statistical wave and wind parameters. The conclusion is
given in Section 4.

2. AutoQC on time series data

Oceanographic and meteorological observations start
from data acquisition in time. A poor quality time series
data, such as too many erroneous values or large amount
of missing data, will result into inaccurate statistical
parameters. Hence, AutoQC is first applied to raw time
series and then to statistical parameters derived from the
time series data.

2.1. Data outlier filtering

The strategy of AutoQC is not to reject data but to
locate suspicious data for further checks because they are
not necessary error data. A data outlier is defined as a
measurement having an erroneous value far from the rest
measurements in a time series record. The data outliers are
caused by various factors, which may depend on the
measurement systems. For example, the data outliers can
be caused by noisy ultrasonic echoes induced by the white
cap from water vapor or break waves during high winds.
Aging sensors can often induce signal spikes causing data
outliers. Statistical parameters such as maximum wave
height and significant wave height derived from the raw
time series containing such erroneous measurements can be
significantly overestimated. The data outliers must be
identified and corrected or removed before it can be used
for the calculation of statistical parameters. The data
outlier can be divided into system outlier and general
outlier. The system outlier is its measurement value clearly
exceeding the limitations of the measurements systems or
environmental conditions. These system outliers with such
obviously unreasonable extreme values can be detected
very easily. The general outliers are measurements within
the limitations but still look suspicious due to its rather
larger deviations from the rest of the measurements. The
detection of such outlier often is a major challenge to the
AutoQC. As an example, an ocean surface elevation time
series from the Cigu pile station is shown in Fig. 3. This
station is located in shallow waters with a depth of 15m.
The sea surface elevation is obtained using four ultrasonic
wave gauges (at 2Hz sampling rate) measuring distance
from the sensors to sea surface. The distance between the
sensor and sea surface is approximately 10m at this pile
station. Several system outliers were identified in this time
series data judged by its values far exceeding the 10-m
range. Also noticed in the time series, there are measure-
ments within the 10-m range but still look suspicious,
which are the general outlier marked by arrows in Fig. 3.
The development of an algorithm to detect such outliers is
discussed in the followings.
James (1993) presented a method to determine the

outlier in a time series based on that deviations of
measurements from its mean value should vary smoothly
and follow a uniform distribution. The outliers can be
detected when its deviations exceed the pre-determined
range in the ranked deviation series. It was proposed to use
three times standard deviation of time series measurements
as the upper and lower limits to check the existence of data
outliers. However, the multiple of standard deviation has
correlation with sample sizes and confidence level for this
statistical test. Besides, this approach performs best when
the time series follows the normal distribution. In this
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Fig. 3. Typical time series with outliers.
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study, we proposed a data outlier test algorithm consisting
of an upper, yH and lower limits, yL, which is expressed as

yH
L

¼ ŷ� Kn � sy, (1)

where y ¼ logðxÞ is the logarithmic transformation of the
time series data x, which has a better fit to normal
distribution; sy is the standard deviation of y. Considering
a short-term observation may be affected by a long-term
decreasing or increasing trend (such as a short-term water
level records affected by tidal variations), this study
replaced the mean ȳ by a long-term trend representative
equation ŷ that is calculated by linear regression equation.
The coefficient Kn is related to confidence level and sample
size of the measurements. For 90% confidence level, Kn can
be estimated by

Kn ¼ 0:49106 � log nþ 1:4059, (2)

where n is the sample size of the time series. The correlation
coefficient of the regression equation is 0.9. The test was
applied to check the time series in Fig. 3 with 90%
confidence level. We found 4 general outliers in addition to
the 21 system outliers. This result is close to James’s
method that found 6 general outliers and 21 system outliers
as shown in Fig. 4. Since both presented algorithm and
James’s method have similar results, however the low and
high thresholds should be defined manually for each case in
James’s method. It is not fit to operational requirement.
The data outlier QC algorithm presented in this study uses
the upper and lower limits to check the outliers, which can
be programmed easily in an operational data collection
network to give effective check for outliers in the raw time
series.

2.2. Missing data interpolation

A continuous time series is needed for the computation
of statistical parameters and spectra. To fill data gaps in
the time series due to data outliers or missing measure-
ments, a data interpolation is needed. The principle for
data interpolation is to retain the statistical characteristics
of the raw data as much as possible.
(a) Auto-regressive (AR) Model: The time series model

provides a stable and accurate interpolation of missing
hydrologic data. The autoregressive (AR) model is a
simplified formula of autoregressive moving average
(ARMA) model, which is commonly applied to stationary
stochastic process (Box et al., 1976). The formulation of
Pth-order model, AR(P) is as following.

Zt ¼ C þ f1Zt�1 þ f2Zt�2 þ � � � þ fpZt�p, (3)

Where Zt is a time series, C is a white noise satisfying
normal distribution and fpis the Pth auto-regression
coefficient. The model identification, parameter estimation
and the following diagnostic checking are applied to
establish an AR(P) model.
The type of time series model can be identified by the

shapes of autocorrelation function (ACF) and partial
autocorrelation function (PACF). An AR(P) process has
the features of exponentially decaying on ACF figure and
cuts off after order P on PACF figure. The formulas of
ACF (rk) and PACF (Fkk) are indicated in Eqs. (4) and (5),
respectively. In the equations, mn is the mean of samples
{Zt}, N is the sample size

rk ¼

PN�k
t¼1 Zt � mZ

� �
Ztþk � mZ
� �

PN
t¼1 Zt � mZ
� �2 , (4)

Fkk ¼

r1 k ¼ 1;

rk�
Pk�1

j¼1
Fk�1;j �rk�j

1�
Pk�1

j¼1
Fk�1;j �rj

; k41:

8><
>: (5)

Assume the order of model is N. Eq. (3) can be expressed
in a matrix formation as Eq. (6). The parameter matrix
[F] in Eq. (6) can then be solved by applying the least
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Fig. 5. (a) ACF of one summer data, (b) PACF of one summer data.
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square method
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The time series model should be diagnosed by parameter
test and lack-of fit test. The T-ratio value of parameter test
is to examine if the parameters are significant enough to
prevent overfitting. In order to assess the degree of fit
between observed Zt

� �
and calculated values by model

Ẑt

� �
, a parameter named as non-dimensional root mean

square error (NRMSE) was defined as

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

t¼1

Zt � Ẑt

Zt

� �2
s

. (7)

The wave climate around Taiwan coastal waters is
seasonal varied significantly. In this study, 10 time series
data sets of surface waves from summer and winter seasons
respectively, was used, and another 10 time series data set
from severe seas caused by typhoons was used for
calibration of AR model. The wave time series data are
from the Cigu pile station. The selected data sets have no
outlier and tidal effect. Figs. 5(a),(b) and 6(a),(b) show an
example of ACF and PACF plots from summer and
winter, respectively. AR(1) model was identified for these
two examples based on the fact that the exponentially
decaying on ACF plot and cut-off PACF plot after first
time lag. On the other hand, we found the model
identification for typhoon data varies depending on
individual case. Although, ACF and PACF plots from
one time series during typhoon Bilis in August 2000 are
similar to the result of summer data as well as AR(1) model
(see Fig. 7(a) and (b)). However, the analyzed time series
during typhoon Yagi is difficult to be identified to AR
model (see Fig. 8(a) and (b)). Identification and diagnostic
checks of all summer and winter data sets are listed in
Table 1. The wave records from summer and winter belong
to AR(1) model with most of the T-ratio values of
calibration cases greater than 2.0 indicating significant
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Fig. 6. (a) ACF of one winter data, (b) PACF of one winter data.

Fig. 7. (a) ACF of one typhoon BILIS data, (b) PACF of one typhoon BILIS data.

Fig. 8. (a) ACF of Typhoon YAGI data, (b) PACF of Typhoon YAGI data.

Table 1

Identification, parameter estimation and diagnostic check of AR model

Data group Model identification Parameter estimation Diagnostic check

Calibration cases Group assessment f1 (mean/sd./COV) C T-ratio NRMSE

Summer data 9@AR(1)1@ none AR(1) 0.667/0.033/4.9% 340.8/41.6/12.2% 31.1 2.5%

Winter data 8@AR(1)2@ none AR(1) 0.486/0.078/16.0% 527.6/69.5/13.2% 19.5 3.1%

Note: sd. ¼ standard deviation, COV ¼ coefficient of variation.

D.J. Doong et al. / Ocean Engineering 34 (2007) 234–246 239
parameter. The average NRMSE is less than 5% showing
good agreements of AR(1) model on the data. It is
therefore concluded that the wave records in summer and
winter seasons can be simulated by AR(1) model at Cigu
station. The coefficient of variance (COV) for the model
parameters are below 20%, means the spreads of model
parameters are accepted to use the mean values to be the
regional model parameters for summer and winter data at
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Cigu station. The regional models are then applied to fit
with other hundred data sets from the same Cigu station
given the average NRMSE of 12.8%. It presents the
acceptable results of using AR(1) model to simulate time
series data in summer and winter.

(b) Limitation on data interpolation: To assure data gap
can be reasonably interpolated without the loss of its
connatural characteristics, the amount of missing data in a
time series record should be limited. The maximum amount
of missing data allowed in a record depends on the data
patching ability of the chosen interpolation methods to
return its original statistical characteristics. The absolute
bias of statistic (ABS) parameter is used to judge the bias
of statistical parameters after interpolation, which is
expressed as

ABS ¼
S � Ŝ

S

					
					 (8)

where S is the statistical parameter from original data
series (such as significant wave height, period), and

_

S is the
same statistical parameter from the data series interpolated
by the AR(1) model for a specified amount of data lost. To
determine the maximum amount of missing data of a time
series, Monte Carlo method was applied to simulate
missing data of typical summer and winter surface waves
time series. The random positions were generated from a
uniform distribution for 100 runs. Totally 1200 samples are
simulated in each run. Fig. 9 show the ABS of significant
wave height versus the amount of lost data in the simulated
sea surface elevation time series. The simulations show that
ABS increase as the total amounts of missing data increase.
Assessment by the ABS of other wave parameters from the
simulated time series showed similar results. It is empiri-
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6
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total observation data.

3. AutoQC on statistical parameters (SPQC)

The quality check of statistical parameters use algo-
rithms based on limitations imposed by measurement
ranges, temporal variability, and correlations among
parameters.

3.1. Range-rationality check (RRC)

Any statistical parameters cannot have its value exceed
the range of sensors or the physical restrains of the marine
environments. The range-rationality check is to assure that
the magnitudes of statistical parameters are first within the
limits. For example, due to the wave breaking induced in
shallow waters, the measured significant wave height
cannot exceed the breaking wave height imposed by the
local water depth. In addition, the significant wave height
should not be over the measurement range of equipments.

3.2. Variation-continuity check (VCC)

The variation-continuity check consists of time-continu-
ity check (TCC) and space-continuity check (SCC), which
are based on the concept that evolution of natural
phenomenon in time or space should be gradual and
smooth. The National Data Buoy Center (NDBC) of
United States has developed three TCC algorithms for
pressure, temperature, and other parameters (NDBC,
2003). In this study, it is focused on the TCC algorithm
300 400 500

f lost data  (-)

olated time series versus amount of lost data.
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on significant wave height. Field data show that the
upcoming sea state has a leaving effect from sea states of
preceding hours. This implies that the temporal change of
significant wave height depend on the significant wave
heights of previous hours. A sea-state independent fixed
threshold for the TCC of significant wave height could
underestimate the temporal variability in high seas and
overestimate the variability in low seas. This paper presents
a sea-state-dependent TCC algorithm for significant wave
height which is developed based on the property of Markov
process in statistics.

(a) Markov process of significant wave height: Stochastic
time processes can be ranked in increasing order of
complexity, depending upon the degree of causality they
embody as having a sort of ‘‘memory’’ of its own past.
That is, the random event which occurs at time n may be
dependent upon that which occurred at time (n�1) or
earlier stage. Markov process is a process with a short-term
memory that means each random event is only influenced
to some degree by its previous predecessors (Ang and
Tang, 1975). Markov process has no direct memory of
earlier events. This study examines processes with simpler
first order model for the operational QC program. That is,
it may be possible to predict the probability of states of
significant wave height at time n refer to its formal sea state
at time (n�1). The acquiring additional information on
time (n�2), time (n�3), etc., may not provide further useful
information for making predictions at time n.

If a hydrologic data x at time n is affected by its previous
state xn�1, we can model the stochastic process by the
conditional probability P½xn xn�1�

		 . Furthermore, the tran-
sition probability of the data change from state i in stage X

to state j in stage Y is expressed in the following equation:

pðj; iÞ ¼ P½Y ¼ yj X ¼ xij � (9)

That is, the probability that the information in stage Y

(i.e. time n+1), given the knowledge that it was in stage X

(i.e. time n). It is assumed that the transition mechanism of
the system, although random, remains constant over time,
Table 2

Transition probability of significant wave height between different states

Next states Present states State I State II State III State IV

0–30 30–50 50–80 80–100

State I 0–30 46.9 51.0 1.0 0.0

State II 30–50 7.6 76.5 15.6 0.3

State III 50–80 0.1 12.3 67.4 15.8

State IV 80–100 0.0 0.2 30.3 43.9

State V 100–150 0.0 0.0 2.3 16.2

State VI 150–200 0.0 0.0 0.0 0.4

State VII 200–300 0.0 0.0 0.0 0.0

State VIII 300–400 0.0 0.0 0.0 0.0

State IX 400–500 0.0 0.0 0.0 0.0

State X 4500 0.0 0.0 0.0 0.0

Unit of wave height: cm.
i.e. called the homogeneous Markov process. This collec-
tion of probabilities forms a transition probability matrix.
Divide the history data into i and j non-overlapping states,
respectively, in the sequent stages, the transition prob-
ability matrix can then be expressed in the following
equation.

PY ;X ¼

p11 p12 � � � p1j

p21 p22 � � � p2j

..

. ..
. . .

. ..
.

pi1 pi2 � � � pi;j

2
666664

3
777775 (10)

pi;j ¼ P Y nþ1 ¼ yj X n ¼ xij

h i
¼ mi;j

,Xj

k¼1

mi;k (11)

In the above equation, mi;j is the sample number
happened from state i of stage X to state j of stage Y.

(b) Built and rebuilt of transition probability matrix: As
an example for transition probability matrix analysis,
significant wave height measurements at 2-h interval from
Longdong buoy in the year 2000 are selected. There are
4392 significant wave height data, which are then divided
into 10 states (0–30, 30–50, 50–80, 80–100, 100–150,
150–200, 200–300, 300–400, 400–500, 4500 cm). The
resulted transition probability matrix is shown in Table 2.
From the table, we found most of the high probability
events occurred at the same states between two sequent
time steps indicating the fact of large waves always comes
after large waves and vice versa. In order to fit this method
to data QC process, the second stage of Markov process
was modified in this study. As the observation interval of
significant wave height is 2 h, the significant wave height
variation in 2 h is defined as the variable of second stage.
This newly calculated sea state variations are divided into
10 intervals, which are 0–10, 10–20, 20–30, 30–40, 40–50,
50–60, 60–70, 70–80, 80–90 and 490 cm. The rebuilt
transition probability matrix was calculated and shown in
Fig. 10. The critical limitations of the following stage were
State V State VI State VII State VIII State IX State X

100–150 150–200 200–300 300–400 400–500 4500

0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

4.3 0.0 0.0 0.0 0.0 0.0

24.2 1.1 0.2 0.0 0.0 0.0

63.7 16.1 1.7 0.0 0.0 0.0

26.2 52.1 21.0 0.4 0.0 0.0

1.5 23.5 68.0 6.3 0.7 0.0

0.0 1.2 42.7 51.2 4.9 0.0

0.0 0.0 9.5 28.6 52.4 9.5

0.0 0.0 0.0 0.0 66.7 33.3
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Table 3

Allowable variation of wave height of different sea states

Previous sea state (wave height,

cm)

Allowable variation (2 h lag

time)

0–30 16.1

30–50 18.2

50–80 31.3

80–100 35.2

100–150 53.0

150–200 68.5

200–300 85.2

300–400 169.5

400–500 188.9

4500 157.8

Table 4

Marked numbers of different failed QCs and measurements

Types of QC Measurements

Wave

height

Wind

speed

Air

temperature

Air pressure

Out-TSQC 999.8 99.8 99.8 9999.8

Out-RRC 999.1 99.1 99.1 9999.1

Out-VCC 999.2 99.2 99.2 9999.2

Out-PCC 999.3 99.3 99.3 9999.3

Out-ManuQC 999.9 99.9 99.9 9999.9
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Fig. 10. Rebuilt transition probability matrix of significant wave height.
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interpolated under a conference level of 95% (shadow area
in Fig. 10). These values will be used as the allowable range
of sea state change in 2 h for TCC. The values are listed in
Table 3 according to the previous sea state. For example, if
the current significant wave height is 100–150 cm, there are
95% of probability that the change of significant wave
height in the following hour is within 53.0 cm.

Comparison of the checking performance of presented
sea-state-dependent method of TCC process with fixed
threshold was studied. The fixed thresholds of TCC
process used by NDBC is calculated by the formula
sT ¼ 0:58d
ffiffiffiffi
T
p

, where sT is the allowed difference after T

hour. The parameter, d is a non-dimensional parameter, its
value varies with the changed in observation objects. This
value varies upon the local wave climate and 6.0 is used for
significant wave height by NDBC. By applying the above
equation and parameter, the TCC threshold of wave height
for 2 h is up to 4.92m which is not a proper value to use for
the wave climate around Taiwan. So, the threshold was
reduced to 0.492m in order to have a reasonable
comparison. The given adjustable criteria of presented
Markov method is listed in Table 4. Comparison result of
TCC by TCC criteria and NDBC formula for significant
wave height in the year 2000 is shown in Fig. 11. Presented
method filters out 156 records of wave height that does not
comply with the continuity principles while NDBC filters
out 344 suspicious data. The amount of suspicious data is
overestimated by NDBC, which is twice of presented
algorithm. This difference could be even larger in severe sea
states during winter monsoon seasons around Taiwan.
Because the suspicious data by the AutoQC should be re-
checked by ManuQC, less suspicious data could reduce the
job of followed ManuQC.

3.3. Physical-correlation Check (PCC)

Oceanographic and meteorological parameters provide
measures of various physical elements of marine environment,
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Fig. 11. Comparative result of time-continuity check by present sea-state-dependent algorithm and NDBC fixed threshold method.
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Fig. 12. Correlation between mean wind speed and wave energy within different frequency bands.
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which are often closely related. The correlation among
various parameters can be used to develop algorithms for
QC (i.e., physical correlation check (PCC)). For example,
sea surface winds are the major generation source of wind
waves, a close relationship between wave energy and wind
speed can be expected. Steele and Marks (1979) show that
local wind is strongly correlated with wave energy in the
frequency of 0.2–0.27Hz. Lang (1987) showed a better
wind-wave correlation using the square of the mean wind
speed 4 h prior to the observation.

In this study, PCC algorithm on wind and wave data
based on the correlation of wind speed and high-frequency
wave energy is presented. This study used 3725 simulta-
neous wind and wave data sets from Longdong buoy in the
year 2000. In order to study wind-wave correlation,
simultaneous steady wind and wave data are selected
based on following three criteria (1) mean wind speed less
than 25% of variance within a continuous 8 h period, (2)
the difference between wind and wave directions are within
901, and (3) the wave spectral peak frequency is higher than
the peak frequency based on the PM spectral model for the
given wind speed.
Due to the scatter of the data, this study used again the

NRMSE between data and its representative from regres-
sion equation instead of the correlation coefficient to
describe the performance of the regression analysis between
wind and wave. As showed in Fig. 12, good relations of
wind and wave exist in the frequency bands of
0.257–0.355Hz. According to the corresponding mean
wind speeds, wave energy over frequencies bands
0.257–0.355Hz are then divided into 14 groups regions
from 0.2m/s to more than 25m/s. Regression analysis
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results indicated linear relation exists between wind and
wave energy when wind is greater than 6 m/s, specially in
the range of 6–15m/s. There is no significant relation exists
between wind and mean wave energy when the mean wind
speed is less than 6m/s. Fig. 13 show the relation between
mean wind speed and wave energy in the frequency range
of 0.257–0.355Hz, this relation can be expressed as

EðDf Þ ¼ bðf Þ �U10 þ a, (12)
where a and b are the regression coefficients. The PCC
on wave data is to assure wave energy at frequency bands
of 0.257–0.355Hz is within 710% of that estimated by
Eq. (12). The slope of the linear relationship between
wind and wave energy at each frequency band is shown in
Fig. 14. This slope represents the transmitting rate of wind
energy to the wave. Fig. 14 shows the slope decreases with
an increasing frequency, which implies low-frequency
waves are less acceptable to wind energy input than
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high-frequency waves. This analysis was obtained from the
data at a 2.5-m discus buoy, indicating the response of
wave from wind field by this type of buoy.

The significant wave statistical parameters are calculated
from wave spectra, such as significant wave height Hs ¼

4:004
ffiffiffiffiffiffi
m0
p

; where m0 is total wave energy. Therefore, when
the significant wave height is between 3.6 and 4.4 times of
root total energy under a 90% confidence level, the data is
viewed as a valid data. Otherwise, the wave height data will
be marked by the PCC system.
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Fig. 15. Cross-correlation between two anemometers at Longdong buoy.
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Fig. 16. Flowchart of data QC procedures. Symbols: AutoQC: automatic QC;
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check.
In addition to the correlation between the wind and wave,
we often can compare measurements from two collocated
sensors measuring the same parameters. For example, two
anemometers are often installed on the data buoy or pile
station to assure the acquisition of wind data and reduce the
probability of equipment malfunction. Quality of wind
measurements of the two anemometers can be checked by
the comparison between them, which can also be used to
show the deviation caused by aging or damaged anem-
ometers. This study analyzed the relationship between the
average wind speeds in the year 2000 from the two
anemometers installed on Longdong buoy. The result of
regression analysis is shown in Fig. 15. The averaged wind
speeds from the two anemometers appeared to be relatively
synchronized, showing the stability of the observation
system and increasing the reliability of the wind speed data.
The upper and lower limits of the 95% confidence interval
of the linear regression equation are the check thresholds of
PCC on the wind speed. Wind speeds which lie outside the
band region will be treated as data failing QC.

4. Conclusion

Meteorological and oceanographic observations from a
network of moored buoys and fixed platforms in the coastal
waters of Taiwan are used to validate and improve marine
weather forecasting models and to be the design criteria of
coastal and ocean engineering constructions. Erroneous or
missing measurements caused by severe seas, human errors
and aging instruments could significantly decrease the values
of measurements. To assure the quality of measurements, a
quality check program to provide a systematical and timely
examination on the measurements of the network is
installed. In this paper, the developments and applications
of computer algorithms used in the two-stage AutoQC
Data Gap interpolation

Wind-wave correlation
Wind-wind correlation

Data Bank

Data Recycle

Time-continuity check

Spatial-continuity check

-Mark system

- Out-QC statistics

-Extreme value
analysis

-Raw data
-Statistical
parameters
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l Correlation Check

ManuQC: manual QC; TSQC: time series QC; DBC: default basic check;

nality check; VCC: variation continuity check; PCC: physical correlation
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procedures on wave measurements is described. At the first
stage, quality check on raw time series data is performed to
detect erroneous measurements based on upper and lower
limits related to sample size and confidence level. The first
order auto-regression model, AR(1), is used to interpolate
data gaps in the time series. At the second stage, statistical
parameters of wave and wind measurements are examined
based on measurement ranges, continuity of temporal
variations and correlations among wind and wave measure-
ments. A sea-state-dependent variation threshold is devel-
oped from Markov process for the time-continuity check of
significant wave height. The close correlation between the
mean wind speed and the wave energy between 0.257 and
0.355Hz is shown in the study and used for the quality
check of both wind and wave data.

The quality control of a data network requires the use of
the power from both computer algorithms and human
experiences. The AutoQC is not to simply reject measure-
ments; instead it is to identify the suspicious measurements
from large amount of observations by the network for further
manual check. The present data quality check procedure is
now used on the operational monitoring network in Taiwan.
The flowchart is shown in Fig. 16. The successful automated
quality control program is to balance the need of preserving
both quality and quantity of observations.
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