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Influences of Nononshore Winds on Significant
Wave Height Estimations Using Coastal

X-Band Radar Images
Li-Chung Wu , Dong-Jiing Doong , and Jian-Wu Lai

Abstract— Marine X-band radar has been suggested to be
capable of monitoring significant wave heights in both offshore
and open sea areas. In contrast to studies on offshore radar,
significant wave height estimations from coastal radar images,
which exhibit complicated radar backscattering features, have
received little attention. This study proposes a method for
retrieving the significant wave height from coastal areas that are
often influenced by nononshore winds. The square root of the
signal-to-noise ratio in radar images has been widely applied
to estimate the significant wave height. However, nononshore
wind cases show a poor correlation between the square root
of the signal-to-noise ratio and the in situ significant wave
height. In addition, the spectral shapes from radar images in
nononshore wind cases are very different from those in onshore
wind cases. To improve the significant wave height estimations
from coastal radar images, we implement an artificial neural
network algorithm. After training and testing the algorithm,
we confirm that the estimated significant wave heights are more
reliable for both onshore and nononshore wind cases if the square
root of the signal-to-noise ratio, power from nearshore radar
subimages, and in situ wind components are included in the input
layer of the neural network.

Index Terms— Noncoherent X-band radar, nononshore winds,
significant wave height.

I. INTRODUCTION

W IND-GENERATED gravity waves are among the most
significant ocean phenomena. The wave height, which

can represent the power of waves, has received considerable
attention in many fields of application. To obtain wave height
data, in situ wave measurements are most often implemented.
However, while in situ instruments are used to reconstruct the
temporal variations in waves at a single point, remote sensing
techniques provide information over broad areas, and research
has confirmed the practicability of obtaining wave height data
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using satellites and land-based high-frequency (HF) radar.
Unlike HF radar and satellite measurements, which can mon-
itor up to several hundred square kilometers or even almost
global areas, the effective measuring area for ocean waves by
the X-band radar is limited to dozens of square kilometers.
Nevertheless, marine X-band radar, which is typically used to
detect coastlines and obstacles on the sea surface, is currently
one of the most widely used tools for ocean remote sensing.

Radar returns from the sea surface are the key to obtaining
information regarding the ocean environment, such as ocean
waves, sea surface currents, and bathymetry, using X-band
radar [1]–[3]. Previous studies have revealed the mechanisms
of radar backscattering from the sea surface. The Bragg
wavelength of X-band radar is approximately 1.5 cm, and the
Bragg wavelengths of less than 4 cm are the most sensitive
to the wind speed and wind direction. In addition, the radar
backscattering enhanced by ripples is modulated by wind sea
waves and swells [4], [5]. As a result, wind wave and swell
patterns can be presented on X-band radar images. However,
radar measurements are possible only when a local wind field
is present [6], [7]. In addition to the wind speed, the wind
direction also influences the strength of radar echoes. Because
of the short fetch during nononshore winds, wind-generated
short-scale waves are diminished [8], which is unfavorable
to resonant Bragg scattering. As a consequence, wind waves
and swells cannot be imaged well by X-band radar under
nononshore wind conditions.

On the basis of different theories of X-band radar backscat-
tering and imaging mechanisms of ocean waves, various
applications using low grazing angle backscatter have been
proposed to observe the significant wave height (Hs). To date,
more than ten algorithms have been developed to estimate Hs

from noncoherent X-band radar [9]. Although these algorithms
were developed by different principles, they can be classi-
fied into two categories according to whether precalibration
between the radar results and ground truth is necessary.
An algorithm based on precalibration often relies on the
signal-to-noise ratio (SNR) from the radar image and a linear
regression algorithm [5], whereas other algorithms require
the power spectral density or image intensities to calibrate
Hs [9]–[11]. In addition to linear regression, the artificial
neural network (ANN) algorithm has also been applied for
the X-band radar image analysis. ANN is an information
processing technique that was first used in the early 1990s
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and has been applied in a variety of fields [12]. Hs was suc-
cessfully estimated from

√
SNR of offshore radar images using

ANN [13]. Because the precalibration step using additional
reference sensors could be a tough task in practical applica-
tions, the estimation of Hs from radar images without the use
of in situ wave gauges was proposed in recent years, based
mostly on shadowing-based algorithms in which the radar echo
intensity is unnecessary for calibration [14]–[17]. In addition
to shadowing-based algorithms, the correlation between a
raw radar image and the corresponding noncalibrated wave
elevation image was also proposed to estimate the wave height
without using an external reference [18]. However, having a
poor radar echo intensity or low SNR value is unfavorable
for determining the shadowing area from radar images or for
determining a reasonable correlation. In summary, for both
precalibration and calibration-free algorithms, the strength of
the radar echo from the analyzed sea surface images is highly
important. All of these algorithms assume that the radar echo
intensities or SNR values from the sea surface are highly
correlated with the sea state. However, the wave height and
other environmental factors influence the radar echo intensity.
For open sea areas in which most of the environmental factors
are homogeneous, the relationship between the radar echo
intensity and Hs can be simple. Therefore, a single parameter,
such as the radar echo intensity or

√
SNR, extracted from

offshore radar images can be very useful for estimating Hs

by using linear regression [19].
Although the practicability of observing Hs using offshore

X-band radar has been demonstrated, the poor echo intensity
due to nononshore winds remains a challenge to estimating
Hs accurately using

√
SNR from coastal radar. In addition, the

surface wave signal strength in X-band radar images depends
strongly on the range and azimuth (the angle between the
antenna look direction and peak wave direction) [20]. It is
possible to determine upwind or upwave cases for offshore
radar observations to estimate Hs based on the subimage
from the sea area with the strongest radar returns. However,
the coastal land area prohibits us from selecting this area for
the analysis of subimages. In addition, a single wave direction
from a single location is unable to represent the real wave
features within coastal areas due to the spatial heterogeneity
of coastal waves [21].

A few cases of inaccurate Hs estimations under nononshore
winds have been proposed [22]. However, the Hs estimations
under different wind speeds and wind directions using coastal
radar still need to be confirmed carefully. This study attempted
to explore this issue. We focus on the influences of nononshore
winds on Hs estimations using coastal radar images. Moreover,
we discuss the feasibility of improving the Hs estimation if in
situ wind components or other parameters are included within
the algorithm. Field radar images and simultaneous in situ
meteorological and sea-state data will be studied as follows.

II. DATA SOURCE

Fig. 1 shows the sea area of our study site within the
coastal area of Hualien, Taiwan. The land area of the study
site is almost entirely mountainous terrain, and the shoreline

Fig. 1. Locations of different stations. The area where the radar echo
intensities were recorded is delineated by a red dashed line. The land area is
marked in gray. The different in situ stations are within 4 km of the radar
antenna.

orientation is approximately 20◦. To confirm the influences of
environmental factors on radar backscattering, we collected in
situ wind, wave, current, and tide data from adjacent stations.
Wave data measured by a bottom-mounted wave station are
used for comparison to confirm the Hs results estimated from
the radar image sequences. The bottom-mounted reference
wave and current station is equipped with both a pressure
sensor and a vertical acoustic beam to measure the in situ
significant wave height. The locations of the radar antenna
and different in situ stations are marked in Fig. 1. Our X-band
radar is horizontally polarized and equipped with an antenna
2 m in length that yields an image sequence sampling rate
of 0.7 Hz. We collected radar images over a spatial range
of 3750 m with a grid size of 7.5 m. The system stores the
logarithmically amplified radar backscatter information at a
12-bit image depth. The radar measurements were collected
in 128 continuous images from the first 183 s of each hour.

To discuss the environmental influences on the radar mea-
surements, simultaneous in situ meteorological and sea-state
data were collected and analyzed. According to an in situ cur-
rent data analysis over a one-year period, 88% of near-surface
ocean currents are below 0.3 m/s. In addition, most of the
current directions are roughly parallel to the shoreline. The
influence of the radar echo intensity due to wave-current
interactions is not obvious.

In general, the influences of tides on the radar measurements
in coastal areas should not be ignored. In coastal areas with
high tidal differences and mild topography, low tides may
result in a large area of shallow water, in which waves become
steep and even break. Steep and breaking waves increase the
strength of radar backscattering and, consequently, influence
the Hs estimation using noncoherent radar. The mean tidal
range in the study site is 1.2 m, and the nearshore slope,
which is defined as the ratio of the closure depth over
the horizontal distance between the closure depth and the
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Fig. 2. Wind rose diagram. The difference in the wind strength between
onshore and nononshore winds is obvious.

shoreline, is 0.13. According to the conditions of this tidal
range and the nearshore slope, the horizontal distance between
high-tide and low-tide shorelines is approximately 10 m. The
pixel spacing of our radar image is 7.5 m, which means
that the horizontal distance between the high-tide and low-
tide shorelines is within 2 pixels on the radar images. Under
this condition, the influence of tides on the nearshore radar
backscattering is not obvious. Rainfall also has a significant
impact on radar signals backscattered from the ocean. In the
presence of rain, the radar backscatter intensity is enhanced.
However, wave signatures are eliminated due to the noise
introduced by rain [23]. Therefore, we manually check all
the radar images to find and remove the radar cases recorded
during rain. Noise from rain influenced 8% of our radar cases;
thus, our radar dataset influenced by noise due to different
rainfall intensities is insufficient. Consequently, the influence
of rain-induced noise on Hs estimations using X-band radar
is not discussed in this study.

In summary, this sea area is a suitable site to focus
on the influences of nononshore winds on Hs estimations
using noncoherent radar. We collected data over a period of
approximately one year using different measurements. After
removing the data impacted by rain and the data lacking
simultaneous in situ data, there were approximately 3200 cases
with simultaneous radar and in situ data.

III. WIND FEATURES IN THE STUDY SITE

The wind is one of the most significant factors inducing
radar sea returns [24]. Fig. 2 shows that the stronger winds in
the study area originate mainly from the northeast and adjacent
directions. These strong winds are mainly due to the effects
of winter monsoons, where few winds with very high speeds
are due to the influence of typhoons.

In addition to the winter monsoons, we also observe
interdiurnal wind variations. Unlike open sea areas, sea–land
breezes are often unavoidable in coastal areas. The temperature
difference between the land and the sea is a fundamental cause
of these sea–land breezes. During the day, this temperature

Fig. 3. Spectra of the cross- and along-shore wind components. There is an
apparent one-day oscillation of the cross-shore winds. In contrast, there are
almost no diurnal variations in the along-shore winds.

difference increases because of the difference between the hot
land and cool sea, which produces a pressure difference at
low levels in the atmosphere. This pressure difference disap-
pears at night, and the temperature difference is sometimes
reversed [25], which can cause winds from the land side to
move in an offshore direction. In general, the strengths of
nononshore winds are normally weaker than those of onshore
winds and blow in roughly the opposite direction. Our study
site faces the Pacific Ocean, which is the largest body of water
in the world; the size of a water body has a great influence
on the strength of the sea–land breeze. In addition, the study
area includes a mountainous area; thus, mountain–plain winds
are also unavoidable. In general, mountain–plain breezes blow
from the plains toward the mountains during daytime and
from the mountains toward the plains at night. Because the
mountain–plain wind direction is similar to the direction of
the sea–land breeze, nononshore winds are frequent.

To classify the wind cases, we decompose the in situ winds
into cross-shore and along-shore wind components. A natural
shoreline cannot be completely straight; thus, the wind direc-
tion and shoreline orientation relationships can be diverse.
To simplify this issue, the shoreline orientation is simply
defined as 20◦. The positive cross-shore wind components
are defined as onshore winds. The negative cross-shore wind
components are defined as nononshore winds. Based on this
classification, approximately 52% of our samples belong to
nononshore cases.

After analyzing the spectra of the cross-shore wind compo-
nents based on different seasons (see Fig. 3), we observe an
obvious energy density at the diurnal band whose frequency
is 1 (1/day). The peak frequencies from the spring, summer,
and fall spectra are all within this diurnal band. We confirm
that the diurnal variations of cross-shore winds occur more
frequently in summer and fall. We also observe an obvious
energy density in the very low-frequency bins in winter due
to the continuous and strong winds under the influence of
the winter monsoon. In contrast to the cross-shore winds,
the spectra of the along-shore wind components in all seasons
show a strong energy density in the very low-frequency bins.
We scarcely observe the one-day oscillations of along-shore
winds.
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Fig. 4. Radar images of onshore and nononshore cases. The black square
and red square on each image show the subimage areas to estimate Pn and√

SNR, respectively. The wind directions of the onshore and nononshore wind
cases are shown on the radar images as well.

TABLE I

ENVIRONMENTAL FEATURES OF TWO RADAR IMAGE CASES WITHIN 14 H

In general, the winds are influenced by different environ-
mental factors, and nononshore winds are unavoidable at this
study site. The backscatter from the sea in the horizontally
polarized (HH) X-band radar cross section is maximized when
the antenna looks in the wind direction and is minimized in
the opposite direction [26]. This also results in poor radar sea
returns when the wind direction is not onshore.

IV. INFLUENCES OF NONONSHORE WINDS ON

SIGNIFICANT WAVE HEIGHT ESTIMATIONS

We have confirmed that the diurnal variations of cross-shore
winds at our study site are obvious, especially in summer
and fall. Fig. 4 shows the radar images of the nononshore
wind and onshore wind cases that were recorded in the
fall. These two images were recorded at 23 o’clock and at
12 o’clock on the next day. The time is based on the local
time (UTC + 8). Because the western half-circles of the radar
images at this study site represent the land area, we show only
the eastern half-circle, which is mostly the sea area. The in
situ meteorological and ocean wave features at these two hours

Fig. 5. Radar echo intensities in the cross-shore direction. For the nononshore
case, the decay of radar echo intensities is limited only within the near range
from the radar antenna.

are shown in Table I. The wave features, such as the in situ
significant wave heights and directions, are similar at these 2 h.
In general, the wind speed to induce ripples for the Bragg
scattering should be faster than approximately 2∼3 m/s [27].
The wind speeds in these two cases are approximately 4 m/s.
Although the wind speeds at these 2 h both belong to Beaufort
number 3, their wind directions are almost opposite. For
the sea area in the onshore wind case, we can identify the
patterns of ocean waves that are key to estimating Hs using
shadowing-based algorithms. Unlike the image of the onshore
wind case, the radar echo intensities from the nononshore wind
case are weak.

To compare the features of radar echo intensities from
different radar image cases, we normalize the radar echo
intensity from each image sequence as follows:

In(x, y, t) = I (x, y, t)/Imax (1)

where I (x, y, t) is the recorded radar echo intensity from each
case. In our study, the original analog radar video signal is
digitized into 4096 gray levels. In(x, y, t) is the normalized
result from I (x, y, t), and Imax is the maximal value of the
entire I (x, y, t) from all of our radar image cases. Due to the
effects of the spatial inhomogeneity of the radar echo intensity,
which is affected by the decay with distance and sea surface
roughness, the radar sea returns can be diverse at different
radar ranges. Fig. 5 shows the range series of normalized
radar echo intensities in the cross-shore direction of two cases
described in Table I. The patterns of sea surface waves or
swells were eliminated by taking a time average of 128 con-
tinuous radar image sequences from each observation. Both
the onshore and the nononshore wind cases show that the
normalized radar echo intensities decay with distance from
the shoreline. However, the difference between the radar echo
intensities of these two cases is obvious at farther distances.
For the nononshore case in Fig. 5, the decay of radar echo
intensities is limited only within the near range from the
radar antenna. Although the mechanics of radar returns from
ocean waves are still not fully understood, specular reflection
and Bragg backscattering are viewed as two of the most
significant mechanics contributing to radar returns from the sea
surface. Radar echoes are generated by the Bragg scattering
at low grazing angles; at near-vertical grazing angles, radar
echoes are generated by specular reflections from the sea
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surface [28]. As the waves are close to the coast, the wave
crests are roughly parallel to the shoreline, which is mainly
due to wave refraction. The refracted waves are approximately
perpendicular to the radar beam, and the front faces of these
nearshore waves are conducive to specular reflections. In
addition, microwave radiation is also reflected by the facets
caused by nearshore breaking waves. The radar echo intensity
due to specular reflections from large waves near the shoreline
is more significant than that far from the shoreline. We select
an area where the shortest distance between the shore and
this area is only tens of meters, shown as the black square
in each radar image of Fig. 4. To avoid the influence of land
noise from the radar image, the size of the nearshore subimage
is only 32 × 32 pixels. We estimate the power Pn from the
nearshore subimage sequences. Pn is the integral of the 3-D
spectral density from the small sea area subimage sequences.
As shown in Table I, the Pn value from the onshore wind
case is approximately 1.2 times that from the nononshore wind
cases.

Compared to Pn , the parameter SNR is more frequently
applied for most of the Hs estimations from noncoherent
X-band radar data. The definitions of SNR are diverse accord-
ing to different types of signals and different applications. For
the issue of X-band radar, the SNR value is determined by
separating the different spectral components based on the wave
dispersion relation, as follows [5], [19], [29]:

SNR =
∫

SW(
�

k)d2k/

∫
Sbgn(

�

k, ω)d2kdω (2)

SW(
�

k) =
∫

SW(
�

k, ω)dω (3)

where
�

k is the wavenumber vector, ω is the angular frequency,

and SW(
�

k, ω) is the nonscaled wave spectrum, which can be

estimated from the filtered spectrum SF (
�

k, ω) as follows:
SW(

�

k, ω) = SF (
�

k, ω) · TM(k) (4)

TM (k) � k−β (5)

where TM(k) is the modulation transfer function. The value
of β was empirically suggested to be 1.2. k is the wavenum-
ber modulus. It should be noted that this empirical transfer
function was determined using onboard marine radar in a deep
water area (the water depth is approximately 600 m). Although
the modulation transfer function was also investigated in a
coastal area [30], the most suitable value of β is still under
discussion. We still adopt β = 1.2, which is widely used in
applications.

Sbgn(
�

k, ω) in (2) is the spectral density of background noise,

which can be estimated from SI (
�

k, ω) as follows:
Sbgn(

�

k, ω) � SI (
�

k, ω) − SF (
�

k, ω) − SHH(
�

k, ω) (6)

where SF (
�

k, ω) is the spectral density estimation of the com-
ponents located inside the wave dispersion shell, as follows:
ω = (q + 1)

√
[g|�

k|/(q + 1)] tanh[|�

k|h/(q + 1)] + �

k · �

U (7)

where h is the water depth,
�

U is the surface current vector, and
q is the order of the qth harmonic. In our study, we implement

q = 0 and q = 1 to determine SF (
�

k, ω) and SHH(
�

k, ω) from

SI (
�

k, ω), respectively. Because
�

U is often unknown, the least-
squares method can be implemented to determine the wave

dispersion shell within the image spectrum SI (
�

k, ω) [31].

SI (
�

k, ω) is the spectral density of the subimage sequences
In(x, y, t) using the discrete Fourier transform. The width of

the dispersion shell is limited within the range of ω
(

�

k
)

±�ω,

where ω
(

�

k
)

is estimated using (7), and �ω is the angular
frequency step used to sample the spectra [29].

The spectral components are located within the spectral
domain ��

k ,ω
defined as follows:

��
k,ω

≡ [−kxc, kxc) × [−kyc, kyc
) × [ωth, ωc) (8)

where kxc , kyc, and ωc are the Nyquist wavenumbers and
angular frequency, which are limited by the spatial and tem-
poral sampling resolutions of radar image sequences. ωth

is the frequency threshold to avoid the influences of static
patterns and the group line from the image spectrum. We adopt
ωth = 2π · 0.04 rad/s based on [32].

At present, the influences of breaking waves on the values of√
SNR are still unclear. To select the suitable subimage area for

the estimation of
√

SNR, we avoid the nearshore area, which is
influenced by breaking waves. We focus on the area marked
by a dashed rectangle in Fig. 4, which is approximately 1 km
from the shoreline. The water depth in this area is over 40 m.
The size of the subimage is the result of a tradeoff between
the accuracy of the estimates and the homogeneity constraints
on the sea parameters [33]. Although no final conclusion has
yet been reached on the best size of the subimage, the side
lengths of the subimage are often suggested to range from
64 to 256 pixels [7], [34], [35]. Because the inhomogeneity
of the coastal wave patterns within 256 pixels is obvious
in our study site, we select the subimage with the size of
128 × 128 pixels to estimate

√
SNR.

Table I also presents the
√

SNR values estimated from the
subimage of this sea area. The

√
SNR value from the onshore

wind case is approximately 6.4 times that from the nononshore
wind case. Compared to the ratio of nearshore power Pn values
in Table I, the ratio of

√
SNR values between the onshore

and nononshore wind cases is much larger. For the cases
presented in Table I,

√
SNR is sensitive to the influence of

nononshore wind. This result preliminarily confirms that the
wave signals from radar sea returns are sensitive to the coastal
wind direction. In case we need to estimate Hs based on radar
sea returns, the influences on nononshore winds cannot be
ignored.

Table I presents only two cases. We continue to discuss
this issue using all of our radar measurements. The values
of

√
SNR under different wind conditions are first explored.

As shown in Fig. 6, the positive cross-shore and positive
along-shore wind components are slightly correlated with√

SNR. Although most of the higher values of
√

SNR are
related to strong positive wind components, the correlation
coefficient between

√
SNR and the positive cross-shore wind

speeds is only 0.6. The negative cross-shore wind components
that blow from the land side show poorer correlation with
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Fig. 6. Relationships between the in situ wind speed components and
√

SNR.
Higher values of

√
SNR occur when the wind and wave directions are similar.

The correlation coefficients between
√

SNR and the positive speed components
(Rp), and the correlation coefficients between

√
SNR and the negative speed

components (Rn) are both shown.

√
SNR, and the correlation coefficient is 0.16. Fig. 6 also shows

the relationship between the wind directions (θwind) and wave
directions (θwave). Because most of the coastal wave directions
are more or less onshore, the obvious differences between
the wind and wave directions often occur during the negative
cross-shore wind cases. In addition to the negative cross-shore
wind components, the along-shore wind components also show
poor correlations between the wind speed and

√
SNR if the

wave direction is far from the wind direction.
The relationship between

√
SNR and the in situ significant

wave height in the open sea is linear and highly correlated with
the measurements by offshore radar stations [19]. However,
this relationship still needs to be verified in coastal areas.
Fig. 7 shows the relationship between

√
SNR and the in situ

significant wave height in the coastal waters. To present the
wind features effectively, our in situ wind speed data are
classified according to the Beaufort scale (Bn). We observe
that high

√
SNR values are often related to high onshore wind

speeds. On the other hand, weak onshore winds do not result in
high

√
SNR values. Unlike the onshore wind cases that include

sufficient cases with strong wind speeds, the nononshore wind
cases of the Beaufort number 4 compose only 0.5% of the
whole nononshore wind dataset. Because the nononshore wind
samples with high wind speeds are insufficient, the

√
SNR

relationships for the wind speed cases with Beaufort num-
ber 4 are limited within a narrow range of

√
SNR. For the

nononshore wind cases, the correlation coefficient between
the

√
SNR values and in situ significant wave height is poor.

We also fit our data using linear regression, which is widely
applied to estimate the Hs using radar data. Fig. 7 shows that
the intercepts for the onshore and nononshore wind cases are
similar. However, the value of the slope from the nononshore
wind cases is approximately 1.7 times that of the slope from
the onshore wind cases. Compared to the onshore wind cases,

Fig. 7. Relationships between
√

SNR and the in situ significant wave height in
the onshore and nononshore wind cases. The ranges of

√
SNR under different

Beaufort scales of wind speed are also shown as the lines with double arrows.
The correlation coefficient (R) between

√
SNR and the in situ significant wave

height is also shown in each plot.

the
√

SNR values from nononshore wind cases are smaller.
We also observe more nononshore wind cases with low values
of

√
SNR (<1) but large values of the in situ significant wave

height (>2.5 m), which is why the slope of the linear fit from
the nononshore wind cases was higher than that from the
onshore wind cases. To accurately estimate Hs from

√
SNR,

a high correlation between
√

SNR and the in situ significant
wave height is necessary. However, the nononshore wind cases
show a poor correlation, which can result in an obvious
underestimation of Hs using low

√
SNR.

We also discuss the relationships between Pn and the in situ
significant wave height (see Fig. 8). Although both onshore
and nononshore wind cases show positive correlations between
Pn and the in situ significant wave height, the correlation
coefficients (R) are poor. Because the area of the subimage is
within the surf zone, the influence of breaking waves on the
radar echo return is also unavoidable. Comparing the results of
Figs. 7 and 8, the in situ significant wave heights show a higher
correlation with

√
SNR than with Pn . However, both onshore

and nononshore wind cases show similar values of Pn under a
higher in situ significant wave height, which means that higher
values of Pn are often related to higher in situ significant wave
heights, regardless of whether they are onshore wind cases or
nononshore wind cases.

To estimate Hs accurately, a single parameter is not enough.
In Section V, we will attempt to integrate the parameters of√

SNR and Pn to estimate Hs .
In addition to the features of

√
SNR and Pn , we also explore

the spectral features obtained from the radar images. The 1-D
backscattering spectra of radar can be obtained based on the
integral value of the nonscaled wave spectrum. We focus on
the influences of nononshore winds on the spectral shape. The
distributions of the spectra are diverse, and the spectral width
parameters are applied here to quantify the spectral shapes as
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Fig. 8. Relationships between Pn and the in situ significant wave height in the
onshore and nononshore wind cases. The ranges of Pn from the onshore and
nononshore wind cases are similar. The correlation coefficient (R) between
Pn and the in situ significant wave height is also shown in each plot.

Fig. 9. Relationships between the in situ significant wave height and
the spectral width parameter from radar images. Under similar sea states,
the spectral widths are larger in the nononshore wind cases than in the onshore
wind cases.

follows:
wd =

√
m0m2

m2
1

− 1 (9)

mn =
∫ ∞

0
f n Sw( f ). (10)

The spectral width parameter wd has a value between
0 and 1, and it serves as an index of the narrowness of the spec-
tral bandwidth; the spectrum is said to be narrow-banded when
the values of these parameters are very small [36]. In addition,
higher in situ significant wave heights are roughly related
to smaller values of wd [37]. Fig. 9 shows the relationship
between the in situ significant wave height and the spectral
width parameter wd from the radar images. The onshore wind
cases show that the values of wd decrease, while the in situ
significant wave heights increase. However, the nononshore
wind cases show wider spectral shapes under similar in situ
significant wave height conditions. Even though an empirical
relationship is applied to correct the spectral shape, the spectral

Fig. 10. ANN-based Hs estimator in this study. There are only ten neurons in
the hidden layer of the ANN structure.

√
SNR, Pn , and zonal and meridional

winds (u and v) are included as the ANN inputs.

shape from the nononshore wind case is still unreliable. This is
probably due to insufficient radar echoes from the sea surface
during the occurrence of nononshore winds.

The unreliable spectral shape from the nononshore cases is
a factor affecting the accuracy of the estimated wave spectrum.
The mean wave period, which can be estimated from the
moments of the wave spectrum [38], must be influenced by
the spectral width. Hence, the estimated Hs from the area of
the wave spectrum cannot be accurate in the case where the
spectral shape from the radar is far from that from real ocean
waves.

V. IMPROVEMENT OF THE SIGNIFICANT WAVE HEIGHT

ESTIMATION UNDER THE INFLUENCE OF

NONONSHORE WINDS

After confirming the influence of nononshore winds on radar
observations, we now focus on improving the Hs estimations.
To estimate Hs accurately from the radar data, we cannot rely
on only

√
SNR or Pn individually. In addition, the relationship

between the shoreline and wind direction is a key influencing
factor on the values of

√
SNR and Pn . We attempt to integrate

these multiple factors to estimate Hs using the ANN algorithm.
Although the ANN algorithm has been applied to wind and
wave estimations from X-band radar images [13], [39], these
radar images were observed from an offshore platform. Our
study focuses on coastal areas in which the influences of
nononshore winds and the inhomogeneity of wave patterns on
radar returns must be considered. To estimate Hs using coastal
radar images, multilayer perception (MLP) with a feedforward
algorithm is implemented in our study. The ANN structure
in our study is shown in Fig. 10. Our study focuses on the
practicality of employing ANN to improve the Hs estimation
from coastal radar images instead of optimizing the ANN
structure. Hence, we implement only a simple structure for the
ANN algorithm; there are no cycles or loops in the network.

To implement the ANN, all of the samples are classified
into two parts. One part is for training, and the other is for
testing. To confirm the feasibility of wave height estimation
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TABLE II

DIFFERENT INPUTS FOR THE ANN ALGORITHM

Fig. 11. Results of the Hs estimation using SLR, MLR, and the ANN
algorithm. The testing results of Case (V), which integrates

√
SNR, Pn , and

the wind components into the ANN structure, show the best Hs estimation
results among all the tests.

using ANN, both training and testing datasets should include
cases of higher sea states. The higher sea states in our study
site are related to weather events, such as typhoons and
monsoons. We split our data based on different weather events
and integrate the odd events for training samples and the even
events for testing samples.

To consider the influences of onshore and nononshore
winds, the zonal wind (u) and meridional wind (v) components
are also candidate input parameters for ANN training. As a
result, the candidate input parameters for the training include√

SNR, Pn , u, and v. To confirm the necessity of these
parameters within the network, we design different cases.
Table II shows the input parameters for the different training
cases.

After implementing different cases, we can confirm the
accuracies of the estimated Hs by using the testing results.
Fig. 11 shows the testing results of the ANN based on
different inputs. Both the ANN results and the Hs estimations
using linear regression are presented in Fig. 11. Simple linear
regression (SLR) and multiple linear regression (MLR) are
both implemented to estimate the calibration constants here.
A single input

√
SNR is included within the SLR, while√

SNR, Pn , and wind information are all included within the
MLR to estimate the calibration constants. The correlation
coefficient and the root mean square deviation (RMSD) are
applied here to confirm the different results. Because of the
influences of nononshore winds, we cannot obtain highly
accurate estimates of Hs using SLR, and the MLR results
show better performance than the SLR results. Compared to

Fig. 12. Comparisons of the significant wave height estimations using
different methods. Compared to the results using the simple linear calibration
method, the accuracies of the significant wave height estimations under
nononshore winds are obviously improved.

the SLR results, the results of Case (II) using ANN with a
single input (

√
SNR) demonstrate similar performance.

For Case (I), we use only the wind data as the ANN input.
We verify that the significant wave height estimations cannot
be accurate when relying only on wind information (when√

SNR and Pn are excluded).
According to previous studies on this issue,

√
SNR is widely

regarded as the most important factor for accurately estimating
Hs . The results of Cases (II) and (III), in which

√
SNR and Pn

are included, respectively, confirm that
√

SNR is more effective
than Pn at estimating Hs using the ANN algorithm. However,
a single input is still not enough to train the algorithm. Fig. 11
further shows that the Hs estimations using ANN with more
suitable parameters as inputs can be highly accurate. In other
words, the Hs estimation using ANN can be significantly
improved if

√
SNR, Pn , and the wind components are all

included as inputs. Consequently, in a comparison between
the Hs estimations using MLR and Case (V) using ANN,
including

√
SNR, Pn , and wind information as inputs, the ANN

model shows better performance. This is because our MLR
model assumes that all the inputs are linearly correlated with
the significant wave height; as shown in Fig. 8, the linear
relationship between Pn and the in situ significant wave height
is not clear. Moreover, according to various wave theories,
the relationship between the significant wave height and wind
speed is not simply linear [40]. In contrast to MLR, ANN
training is an unconstrained nonlinear minimization problem
in which the network is iteratively modified to minimize
the overall mean or total squared error [41]. This is one
reason that the Hs estimations from Case (V) using ANN can
achieve better performance. Although the MLR algorithm can
be designed to be more complicated and nonlinear, this issue
is beyond of the scope of this study.

Fig. 12 shows scatter plots of the significant wave height
estimations using SLR and ANN testing Case (V). Hs from
the SLR estimations (approximately 1 m) shows obvious bias.
As shown in the results in Fig. 7, the in situ significant wave
height can range from 0.3 to 2 m, while the corresponding√

SNR values are less than 0.1. Thus, the Hs estimation using
SLR can be uncertain if

√
SNR is too weak. Fig. 7 also

shows the intercepts of the regression lines in the onshore and
nononshore cases (both approximately 1 m), which implies
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that the Hs estimations using these linear relationships must
be at least approximately 1 m. The value of

√
SNR is strongly

dependent on the analysis window range and azimuth from the
radar images. Although better SLR results can be obtained by
averaging

√
SNR over all directions or by selecting a suitable

range of analysis window locations [20], coastal areas with
complicated shorelines limit us to this implementation. This is
a reason that we observe obvious bias in the SLR results when
the

√
SNR values are not adequately high. In contrast, we can

confirm that the Hs estimations under nononshore winds can
be obviously improved if we integrate

√
SNR, Pn , and the wind

components into the ANN structure.
Although our study focuses on the issue of radar monitoring

under the influences of coastal winds, the influence of the
changing tidal height on nearshore radar backscattering for
sea areas with large tidal ranges and mild slopes of coastal
topography should not be ignored. In the case of estimating
the coastal significant wave height in a shallow water area,
the tidal height should be an input parameter for the ANN
training and testing processes.

VI. CONCLUSION

The significant wave height (Hs), which describes the sea
state in a statistical sense, may be regarded as the most useful
sea-state parameter in different maritime applications. The
area of interest for the data required for coastal engineering,
coastal area protection and management, and oceanic recre-
ation is often within several kilometers of the shoreline. Hence,
X-band radar could be a suitable monitoring tool to provide Hs

information operationally. To date, most previous studies have
confirmed the accuracy of Hs estimations using radars installed
on open sea platforms. Compared with radars on open sea pile
stations or ships, coastal land-based radar measurements are
inexpensive and simple to operate. Accordingly, an increasing
number of applications have acquired data based on nearshore
X-band radar measurements. However, the issue of estimating
Hs using coastal radar images has received little attention. One
of the reasons for this limited attention is the complications
and inhomogeneity of radar backscattering from the coastal
sea surface. When focusing on coastal areas, the influences of
terrestrial weather, such as land breezes on radar backscatter-
ing, cannot be ignored. Moreover, because of the influence of
the coastal topography, the dominant wave direction is often
roughly onshore. However, the wind direction can continu-
ously change due to the effects of sea–land breezes. As a
result, the wind and wave directions are sometimes opposite
in coastal areas. In addition, wave transformation phenomena,
such as wave refraction, shoaling, and breaking due to the
influences of the coastal topography, are also important for
the mechanism of radar backscattering. Although our study
focuses on the issue of wave measurement, the applications
of current and shallow water bathymetry measurements using
X-band radar rely on clear wave patterns, which are also
related to a stronger radar echo intensity or higher signal-
to-noise ratio in sea surface images. Therefore, the influences
of the coastal wind speed and wind direction on the radar
measurements must be confirmed carefully.

Our study area is a microtidal coast, and the nearshore slope
is steep. The wave transformations due to shallow water are
limited within very small areas. As a result, we can focus on
the coastal wind effects on radar monitoring. To confirm the
feasibility of estimating Hs under the influences of different
wind directions, our study collected coastal radar images and
simultaneous in situ wind and wave data over a period of
approximately one year. Due to the effects of sea–land breezes
and mountain–plain breezes, the wind sometimes changes
to the opposite direction within one day. To simplify the
wind cases, the positive cross-shore wind components in our
study site are defined as onshore winds, while the nega-
tive cross-shore wind components are defined as nononshore
winds.

We observe obvious differences in the wave patterns in
the sea surface images between the onshore and nononshore
wind cases even when the other environmental conditions,
such as the wind speed, tidal height, and wave conditions,
were similar between the two cases. The most common
method for estimating Hs is based on the square root of
the signal-to-noise ratio (

√
SNR) using linear regression. Hs

estimated from the radar signals of onshore wind cases is more
accurate than that from the radar signals of nononshore wind
cases. Some of the nononshore wind cases show low

√
SNR

values, while the in situ values of significant wave heights
are large. This finding means that the estimated values of Hs

are underestimated when the coastal radar images of some
nononshore wind cases are used. We also check the results
of the linear regression between the

√
SNR values and in situ

significant wave height. The slopes of the linear fit between
the onshore and nononshore wind cases vary. When Hs must
be estimated based on the linear fit between

√
SNR and in situ

Hs , we should implement the estimation separately for onshore
and nononshore wind cases.

The feasibility of estimating Hs using nearshore radar echo
intensities is also investigated in our study. Under higher sea
states, both onshore and nononshore wind cases show similar
radar echo intensities. However, the correlation between the
nearshore radar echo power and in situ significant wave height
is poor. To confirm the detailed wave features observed from
radar, we also view the spectra that are estimated from sea
surface images. Both the nononshore wind cases and the
onshore wind cases show that the spectral shapes observed
from coastal areas are scattered under gentle sea states.
In addition, the spectral shapes are quite different between
the onshore and nononshore wind cases. Under similar sea
states, the nononshore wind cases show wider spectral shapes.
Because the mechanics of radar backscattering under different
environmental factors are still not fully understood, it is
difficult to estimate the ocean wave spectrum accurately based
on coastal radar backscattering.

After checking the influence of nononshore winds on the
radar observations, we can confirm that Hs estimations can be
highly uncertain in nononshore wind situations if we rely on
only the linear calibration of

√
SNR or the radar echo intensity.

In this study, we attempt to consider different environmental
factors and use an ANN feedforward algorithm to improve
the Hs estimation. The optimization of the ANN structure is
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beyond the scope of our study; hence, we implement only a
simple structure for the ANN algorithm. The testing results
show that we can obtain more reliable Hs estimates from both
nononshore wind cases if the input parameters for the training
include

√
SNR, the power from nearshore radar subimages,

and in situ wind components. This algorithm still needs some
in situ data to train the ANN algorithm. Some studies have
proposed algorithms to estimate Hs using noncoherent radar
images and do not require calibration using in situ data. Con-
sidering the high complexity of radar backscattering within
the coastal sea area, the practicality of these calibration-free
algorithms still needs to be verified for coastal radar cases.
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