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Abstract
Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential
damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological
interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of
modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an
attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for
the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The
optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti-
mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the
measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly
improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results
also indicate that the algorithm is easy to implement and practical for real-time wave forecasting.
© 2016 Hohai University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Prediction and understanding of ocean waves are extremely
important for ocean-dependent industries, such as shipping
and fisheries, as well as for coastal protection and coastal zone
management. In particular, the highly energetic waves induced
by typhoon events can cause enormous damage to property,
infrastructure, and human lives (Doong et al., 2012; Liu et al.,
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2008). The catastrophic consequences of typhoon-related
events have often been seen and reported in Taiwan in
recent years. Although it is almost impossible to completely
avoid the damage caused by typhoons, more accurate predic-
tion and forecasting of typhoon-induced waves play an
important role in mitigating and minimizing the impacts from
the typhoons. However, the hydrological and meteorological
interactions are complex, and the uncertainties arising from
both weather and hydrodynamic modeling systems due to the
forcing conditions, modeling techniques, and physical pa-
rameters can make wave prediction and forecasting rather
difficult and challenging. In recent years, ensemble approaches
have been widely used to improve quantification of the un-
certainties arising from the modeling systems and physical
parameters. In wave modeling, ensemble approaches can be
generally classified into two types: parameter ensemble ap-
proaches and model ensemble approaches. In both types, a
This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.sciencedirect.com/science/journal/16742370
http://www.waterjournal.cn
mailto:PanS2@cardiff.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wse.2016.02.001&domain=pdf
http://dx.doi.org/10.1016/j.wse.2016.02.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.wse.2016.02.001
http://dx.doi.org/10.1016/j.wse.2016.02.001


53Shun-qi Pan et al. / Water Science and Engineering 2016, 9(1): 52e57
particular wave model is selected to transform the atmospheric
forcing conditions into wave fields, but the atmospheric forc-
ing conditions can be generated in different ways. The
parameter ensemble approach generates wave ensembles
through the wave model, which is driven by the ensembles of
forcing conditions (usually winds and atmospheric pressure)
from a weather model using equally perturbed physical pa-
rameters. For example, in the works reported by Chen et al.
(2010) and Zou et al. (2013), the tide-wave model
POLCOMS/ProWAM (Osuna et al., 2004) was used to pro-
duce the ensemble results of waves, tides, and storm surges
from 50 ensembles of wind field and atmospheric pressure as
the surface forcing. Then, statistical analysis was carried out to
quantify the uncertainties arising from the model results of
both hydrodynamics and morphodynamics. The model
ensemble approach, in contrast, uses the ensembles of surface
forcing conditions generated from different weather models,
each of which is calibrated to its optimal operational condi-
tions for a particular region or globally to drive the wave
model to produce the wave ensembles for statistical analysis.
In the work of Fan et al. (2013), the WAVEWATCH III model
was used to transform the wind fields obtained from four
weather models, namely the National Centers for Environ-
mental Prediction (NCEP) Aviation model (AVN), Japan
Meteorological Agency model (JMA), non-hydrostatic fore-
cast system (NFS), and weather research and forecasting
model (WRF), developed by different research institutions, to
model ocean waves in the coastal waters of Taiwan for real-
time wave forecasting. Their results showed that the mean
wave heights of the waves generated by four wind fields in
general agreed with the field observations from the wave
buoys deployed off the Taiwan coasts. However, it was clear
that, during typhoon events, the peak wave heights were
generally underestimated by the standard equally weighted
averaging method. As the peak wave height during the
typhoon events can be one of the most important parameters in
the decision- and policy-making processes since it represents
the worst-case scenario, it is desirable to improve the meth-
odology currently used to generate more accurate peak wave
heights during the typhoon events. To this end, in this paper, a
locally weighted learning algorithm is proposed to optimize
Fig. 1. Nested computational domains for WAVEW
the weights and used to calculate the resulting wave heights
from each model-ensemble, so that the behavior of the wave
model in response to each wind field can be better captured
and understood, leading to improved typhoon wave fore-
casting. This study used the computed wave heights presented
in Fan et al. (2013) for three typhoon events that occurred in
2011 and 2012 to illustrate the proposed methodology.

2. Wave model and computational domains

As stated in Fan et al. (2013), the WAVEWATCH III model
was selected to predict waves from the surface wind forcing.
For the sake of clarity, the wave model and its computational
domains are briefly described here. The WAVEWATCH III
wave model is a third-generation wave model developed at the
National Oceanic and Atmospheric Administration/National
Centers for Environmental Prediction (NOAA/NCEP)
(Tolman, 1997, 1999, 2009) in the spirit of the WAM wave
model (WAMDIG, 1988; Komen et al., 1994), which has been
widely used to simulate wave fields using the wind data from
various weather models.

In the work of Fan et al. (2013), a nested computational
framework, as shown in Fig. 1, was used. The waves computed
from the left-side coarse-grid domain were used to provide the
boundary conditions for the right-side fine-grid domain. The
resolutions of the coarse and fine grids were 0.5� (about
55 km) and 0.25� (about 27.5 km), respectively. The modeling
system was driven by the wind fields from four weather
models, namely, AVN, JMA, NFS, and WRF. The modeling
system was applied to three typhoon events, Typhoon Jelawat,
which occurred in 2012, and Typhoons Meari and Nanmadol,
which occurred in 2011, as part of their operational fore-
casting. With four wind fields used as the surface forcing, the
model generated four ensembles for waves. The wave heights
of four wave ensembles were averaged using the standard
arithmetical averaging method (i.e., equally weighted, 1/4).
Their results, in general, showed agreement between the
averaged wave heights and the measurements at a number of
selected locations. However, it was clear that the averaged
peak wave heights during those typhoon events were under-
estimated. Those peak waves, which in fact have the most
ATCH III model and locations of wave buoys.



Fig. 2. Comparison of computed wave heights from different winds
and standard mean wave heights with observations at Taitung Open
Ocean Buoy location during Typhoon Jelawat in 2012.
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significant impacts on the coastal areas and can cause the
severest damage, ought to be predicted and forecasted more
accurately, so that such damage can be effectively mitigated
and minimized. Close examination of the predicted wave
heights showed that the wave model responded differently to
different wind fields. The equally weighted averaging method
might be inappropriate for calculating the mean wave heights
and also incapable of representing the peak waves. Therefore,
in this paper, an optimization method is proposed to generate a
set of optimized weights, which can be used to improve the
representation of the ensemble wave heights, especially for
typhoon peak waves.

3. Optimization method

In this study, optimization was based on the concept of
locally weighted learning (Atkeson et al., 1997), which is
briefly described below:

Assuming that we have a set of wave heights (ensembles)
generated by the wave model from different wind fields: Hi

(i¼1, 2,/, N, where N is the number of ensembles), the
averaged wave height H can be calculated with the weighted
averaging method:

H ¼
XN
i¼1

wiHi ð1Þ

where wi is the weight of the ith ensemble. When wi¼1/N,
Eq. (1) represents the standard equally weighted averaging. In
the optimization, wi can be determined using the locally
weighted learning algorithm, in an attempt to better represent
the resulting wave heights with the aid of field measurements.
When a set of measured wave heights is available at any
particular location, a cost function can be established:

J ¼ 1

2

XM
j¼1

�
Hj � bHj

�2 ð2Þ

where J is the cost function, Hj is the averaged wave heights at
the jth location calculated with Eq. (1), bHj is the measured
wave heights at the jth location, and M is the number of data
points available. Using the least mean squares (LMS) algo-
rithm, the gradient of the cost function J with respect to each
weight can be estimated as follows:

vJ

vwi

¼ Hi

XM
j¼1

�
Hj � bHj

� ð3Þ

The parameter wi can be calculated with the gradient
descent algorithm from Eqs. (1) and (3). Writing the algorithm
in matrix format for brevity yields the following equation:

w¼ ðHTHÞ�1
HT bH ð4Þ

where w is the N-dimensional column matrix of weights, H is
the M � N matrix of the computed wave heights, and bH is the
M-dimensional column matrix of measured wave heights.
4. Training and validation

In order to obtain the weights expressed in Eq. (4), training
is required. In this study, training was carried out using the
model results and measurements for Typhoon Jelawat at two
locations, the Taitung Open Ocean Buoy and Pratas Buoy as
shown in Fig. 1. The former is located in a deep-water area
(with a depth greater than 6000 m) and the latter is close to the
shore. At both locations, the wave buoys deployed for the wave
measurements are equipped with a tri-axial accelerometer, so
that surface movements can be recorded for the estimation of a
directional wave spectrum. The accuracy of the tri-axial
accelerometer is 0.3924 m/s2. As shown by Lin et al. (2015),
the correlation coefficient of the significant wave heights
measured by the accelerometer and the real time kinematics
(RTK) GPS wave sensor was as high as 0.99, indicating a high
level of accuracy for the wave measurements from the buoys.

As Typhoon Jelawat is the strongest of all three, it was
expected that the weights obtained from the training could
cover the widest wave height range possible in this study, and
would be valid for applications to other typhoons. It should be
noted that the optimized weights are location-specific. There-
fore, it is necessary to carry out training at each location of
interest in practice. In this study, 128 valid hourly data points
out of 148 hourly measurements from 00:00 on September 24,
2012 to 00:00 on September 30, 2012 (six days) were used.
Fig. 2(a) shows the computed wave heights generated by four
wind fields of different weather models (denoted as HAVN,
HJMA, HNFS, and HWRF, respectively) and the standard mean
wave heights (denoted as Hmean), together with the field mea-
surements (denoted as Hobs) at the Taitung Open Ocean Buoy
location. As shown in the figure, a peak typhoon wave height
up to 19 m was observed on September 27, 2012. In Fig. 2(a) it
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can also be seen that, despite the wave heights generated by the
AVN winds in general agree with the observations, the
computed wave height at the typhoon peak is considerably
under-predicted. For the computed wave heights forced by
other wind fields, the results are less satisfactory at the typhoon
peak, with the worst performance from the WRF wind fields.
The mean wave heights calculated with the standard averaging
method from four ensembles also show a significant under-
prediction at the typhoon peak, and only for less energetic
waves (with wave heights less than 8 m) is the agreement seen
reasonable. Fig. 2(b) shows the mean wave heights with the
standard deviations as the upper/lower limits (shown as error
bars). It is clear that, even when the standard deviations are
considered to compensate for the mean wave heights, the wave
heights at the typhoon peak are still under-predicted by more
than 5m. As indicated by the results shown in Fig. 2, there are
considerable discrepancies in the wave heights generated by
different wind fields, and some performed better than others.
With the predicted wave heights shown, deciding which wave
heights should be used for forecasting could be difficult and
arbitrary. Therefore, simply averaging the wave heights from
all ensembles can be insufficient to yield the desirable results,
as indicated in this example.

In order to improve the accuracy of the averaged wave
heights from four ensembles of the predicted waves, the locally
weighted learning approach, as described in the previous sec-
tion, Eq. (4), was applied to the computed and observed wave
heights as a training exercise to yield a set of optimized
weights. The training used all computed wave heights from
four wind fields, including those generated by WRF winds,
which had little capability of generating the typhoon waves as
shown in Fig. 2(a), without discriminating toward any partic-
ular set of the computed wave heights, as well as the corre-
sponding field measurements made available to this study.
Table 1 lists the optimized weights from the training at both
the Taitung Open Ocean Buoy and Pratas Buoy locations. At
the Taitung Open Ocean Buoy location, the weight for AVN
winds is clearly the highest and that for WRF winds is the
lowest (negative). These values reflect the performance of the
corresponding winds in generating waves, as shown in Fig. 2.
At the Pratas Buoy location, however, the weights for AVN,
JMA, and NFS winds have similar values, with the weight for
JMA winds being slightly more favorable (having the highest
value). This indicates that all three winds are generating wave
heights to a reasonable degree, which is also confirmed by the
measurements (not shown here). The wave heights generated
by the WRF winds still remain the worst at this location in
comparison with the measurements. However, as pointed out
by Hunt et al. (1995), the ill-conditioned nature in the design of
Table 1

Optimized weights obtained from training at Taitung Open Ocean Buoy and

Pratas Buoy locations.

Location Optimized weight

AVN JMA NFS WRF

Taitung Open Ocean Buoy 0.9549 0.2751 0.2667 �0.6453

Pratas Buoy 0.3855 0.4937 0.3081 �0.1307
the matrix used in the linear locally weighted learning approach
can lead to optimal weights consisting of balanced large pos-
itive and negative weights that are essential to minimizing the
output error in the training set.

In order to validate the proposed approach, the optimized
weights listed inTable 1were then used to calculate the optimized
average wave height from four ensemble wave heights, which
were the samedata sets used in training. Fig. 3 shows the resulting
wave heights averaged using the optimized weights (Hopt,
referred to as the optimized average wave heights hereafter),
together with the standard mean wave heights (Hmean) and the
field measurements (Hobs). It is clear that the optimized average
wave heights agree significantly better with the measurements at
the typhoon peak than the standard mean wave heights.

Fig. 4 shows scatter plots of the observed wave heights
against the standard mean wave heights and optimized average
wave heights at the Taitung Open Ocean Buoy and Pratas Buoy
locations. The results clearly show a general improvement with
the optimized average wave heights, in particular for large
waves, as circled in Fig. 4(a), and for waves with heights less
than 7 m. However, for waves with heights around 10 m, the
optimized average wave heights are found to be larger than the
measurements. Fig. 4(b) compares the optimized average wave
heights with the standard mean wave heights and the observa-
tions at the Pratas Buoy location. The optimized wave heights
are found to agree better with the measurements. Overall, due to
the large wave heights at the Taitung Ocean Buoy location, the
improvement of the optimized wave heights appears more
significant in comparison with that at the Pratas Buoy location,
where the water depth and wave heights are relatively smaller.

5. Applications

Following the training and validation, the weights listed in
Table 1 can be applied to other typhoon events. For illustration
purposes, two typhoon events, Meari and Nanmadol, which
occurred in June andAugust 2011, respectively, were used in this
study. Fig. 5 compares the optimized average wave heights with
the observedwaveheights at theTaitungOceanBuoy location for
both typhoons. For Typhoon Meari, shown in Fig. 5(a), the
optimized averagewave heights at the typhoon peak (with values
greater than 6 m) agree significantly better with the measure-
ments than the standard mean wave heights. However, for
Typhoon Nanmadol, shown in Fig. 5(b), the optimized average
Fig. 3. Comparison of standard mean wave heights and optimized
average wave heights with observations at Taitung Open Ocean Buoy
location during Typhoon Jelawat in 2012.



Fig. 4. Scatter plots of standard mean wave heights and optimized
average wave heights versus observed wave heights at Taitung Open
Ocean Buoy and Pratas Buoy locations.

Fig. 5. Comparison of optimized average wave heights and standard
mean wave heights with observations at Taitung Open Ocean Buoy
location for Typhoons Meari and Nanmadol in 2011.

Fig. 6. Scatter plots of standard mean wave heights and optimized
average wave heights versus observed wave heights at Taitung Open
Ocean Buoy location for Typhoons Meari and Nanmadol.
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wave heights are greater than the measurements, while the
standard mean wave heights are slightly smaller than the mea-
surements, but both are within a close range.

Similar to Fig. 4, Fig. 6 is a scatter plot of the optimized
average wave heights and the standard mean wave heights
against the measurements at the Taitung Open Ocean Buoy
location for both Typhoons Meari and Nanmadol. Fig. 6(a)
confirms an improved agreement between the optimized
average wave heights and the measured wave heights for
Typhoon Meari, particularly for the wave heights greater than
6 m. The wave heights are overestimated for wave heights
ranging between 3 m and 6 m. For Typhoon Nanmadol, as
shown in Fig. 6(b), the optimized average wave heights are in
general greater than the measurements, with an improvement
for wave heights greater than 6 m.

Fig. 7 shows a similar comparison of the optimized average
wave heights with the standard mean wave heights and the
observations as those shown in Fig. 5 for Typhoons Meari and
Namadol at the Pratas Buoy location. The results at this
location indicate a general overestimation of the wave heights
for both typhoon events. From Fig. 7(a), it can be seen that, for
Typhoon Meari at the Pratas Buoy location, the measured
wave heights are relatively small, mostly less than 3 m, but the
weights obtained from the training are based on Typhoon
Jelawat, with predominately large wave heights, as shown in
Fig. 4(b). The discrepancies may be attributed to the fact that



Fig. 7. Comparison of optimized average wave heights and standard
mean wave heights with observations at Pratas Buoy location for
Typhoons Meari and Nanmadol in 2011.
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more energetic waves are used in training of the weights as
previously described, resulting in the weights being biased and
wave heights being over-predicted in this case. However, for
the non-typhoon events when wave heights are small, the
impact of these discrepancies can be regarded as insignificant.

In summary, the results presented in this paper clearly
demonstrate that the locally weighted learning algorithm is
capable of optimizing the model ensemble results and
providing improved wave forecasting results in the coastal
waters of Taiwan. In principle, the algorithm is efficient and
easy to implement at particular locations, and the weights can
be updated progressively for real-time wave forecasting. The
inaccuracy shown in Fig. 7 also suggests the need of using a
larger data set over a longer period to further improve the
accuracy of the optimization.

6. Conclusions

An optimization has been applied to the model ensemble
wave heights obtained from the WAVEWATCH III model,
driven by wind fields of four weather models. The locally
weighted learning algorithm was implemented to calculate the
weights associated with each model ensemble result from a
training process using the data measured during Typhoon Jela-
wat, which occurred in 2012, at both the Taitung Open Ocean
Buoy and Pratas Buoy locations. The weights obtained from the
training were then used to yield the optimized average wave
heights, which were compared with the standard mean wave
heights and measurements during two typhoon events in 2011,
Typhoons Nanmadol and Meari. The results show a significant
improvement of the optimized average wave heights over the
commonly used standard mean wave heights, particularly for
the typhoon-induced peak waves. It is also clear that the
proposed optimization algorithm is practically well suited for
and can be easily applied to the real-time wave forecasting.

However, it should be borne in mind that the results pre-
sented in this paper are based on a training over a short period,
approximately six days, with only one typhoon event
(Typhoon Jelawat), which is insufficient for the less energetic
waves. It is expected that the results can be further improved if
the training is carried out using a longer time series of model
results and measurements, which will allow for the variation of
weights with different ranges of wave heights to be included
and fully examined, and more advanced optimization algo-
rithms to be explored.
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