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Study of Wave Group Velocity Estimation From
Inhomogeneous Sea-Surface Image Sequences by
Spatiotemporal Continuous Wavelet Transform

Laurence Zsu-Hsin Chuang and Li-Chung Wu

Abstract—In this paper, a new image processing technique is
introduced for the analysis of consecutive ocean wave images by
spatiotemporal continuous wavelet transform (STCWT) using the
Morlet wavelet as the mother wavelet. This technique, which has
been adapted to give a full time—frequency and spatiofrequency
representation of ocean surface waves from remotely captured
wave image sequences, provides more detailed information from
wave-field measurements than the traditional Fourier transform
(FT) method. A series of numerical simulations of wave image
sequences was analyzed to justify the algorithm and to present
quantitative theoretical results on the propagation of ocean waves
for normal incidence, diffraction, reflection, and shoaling in
coastal areas. The comparisons of these estimates to simulated
conditions for several wave parameters show that the wavelet
theory is applicable to the identification of wave spectra from
inhomogeneous sea-surface image sequences.

Index Terms—Inhomogeneous sea-surface image sequences,
spatiotemporal continuous wavelet transform (STCWT), wave
group velocity.

I. INTRODUCTION

CEAN waves exhibit an oscillating pattern that is a func-

tion of space and time. The wave spectrum has been one
of the most useful tools for the investigation of wave character-
istics since the 1950s [1]. To obtain the spectrum from a time
series or a wave record in the space domain, the Fourier trans-
form (FT) technique has been widely applied. However, we re-
quire information on the relative intensities (but not the spa-
tial or temporal locations) of the particular frequency (spatial
frequency) components to implement the FT technique. Such
information is insufficient in the cases of nonstationary or in-
homogeneous signals, such as surface waves that change in a
relatively short period of time or over a short spatial distance.
When the time/space localization of the spectral components
is required, several studies have already shown the successful
implementation of the wavelet transform (WT) to reveal ocean
wave characteristics from 1-D time-series records [2], [3] and
2-D wave images [4], [5].
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Following the same principles as those of the 1-D and 2-D
wavelet transforms, Murenzi extended the theory of wavelet
transform to multiple dimensions [6]. Then, Duval-Destin and
Murenzi proposed a slightly different generalization scheme to
consider motion analysis [7]. This scheme represents the first
continuous spatiotemporal wavelet transform to be developed.
To consider additional motion parameters, such as the vectored
speed and uniform rotational and accelerated motion in the anal-
ysis of image sequences, Leduc proposed another method called
the Galilean wavelet transform to analyze spatiotemporal sig-
nals [8]. The Galilean wavelets define a family of nonsepa-
rable filters that are suitable for motion representation, while
the wavelet family proposed by Duval-Destin and Murenzi [7]
is separable.

Several remote sensing technologies, such as nautical radar
monitoring and stereophotogrammetry, have proven their ability
to represent spatiotemporal sea-surface wave patterns [9], [10].
Of the ocean wave parameters that can be extracted from spa-
tiotemporal sea-surface images, the wave group velocity is one
of the most significant parameters describing the propagation of
a group of ocean waves because it represents the rate at which
energy is transferred by a train of propagating waves [11]. The
wave group velocity is also important to both oceanography
and coastal engineering applications, such as the study of the
wave shoaling coefficient, the wave energy flux, the long shore
sediment transport equation, the mild-slope equation, and the
wave numerical mode [12]. The wave field is one of the most
useful tools for the extraction of wave group velocity informa-
tion by estimating the relationship between different wave fea-
tures in the spatiotemporal domain. For the homogeneous wave-
field scenario, the FT is clearly the most useful tool for wave-
field analysis and wave group velocity estimation. However, in-
homogeneity is often unavoidable in near-shore and shallow-
water wave fields. For the data requirements of coastal engi-
neering, coastal area protection and management, and oceanic
recreation, the area of interest is always within several kilo-
meters of the land. This proximity implies that we must often
consider the ocean environment in shallow-water areas. How-
ever, the estimation of ocean wave motion parameters from in-
homogeneous spatiotemporal sea-surface image sequences has
received little attention until now.

This study was motivated by the work published in [7], [13],
and [14]. We considered the application of the spatiotemporal
continuous wavelet transform (STCWT) to the estimation
of wave group velocity from continuous sea-surface image
sequences. To verify whether the tool is best adapted to the
problem at hand, we must properly calibrate the procedures
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Fig. 1. Correspondence between sampled points of the physical quantity and the sampled points of the wavelet.

and quantitatively evaluate their performances. Regular and ir-
regular simulated spatiotemporal sea-surface image sequences
are employed in our study to confirm the practicability of our
method.

II. THEORETICAL PRELIMINARIES

The 1-D wavelet transform theory and its application to ocean
surface waves was introduced and discussed in [2]. In this sec-
tion, we focus on reviewing the theory of the STCWT, which
was introduced in [13] and [14]. We then develop an STCWT
algorithm to derive the wave group velocity of ocean waves.

A. Spatiotemporal Continuous Wavelet Transform

The WT is similar to the FT in that it breaks signals into their
constituents. However, the WT breaks the signals into different
kinds of wavelets, which are scaled, shifted, rotated, and speed-
tuned versions of a prechosen mother wavelet. This approach
allows exceptional localization in both the time and space do-
mains via translations of the mother wavelet and in the scale
(frequency/wave number) domain via dilations and rotations.

Consider a (24 1)-dimensional signal, such as a sea-surface
image sequence in two spatial domains plus a time domain,
s(x,t) = s(x,y,1t). The discrete values of s(z,#) correspond

to the sea-surface elevation of each pixel at different locations
and instants. We could represent any finite energy signal by

Q)

s||? = // |s(z,8)2d?’z dt < .

This representation means that the complex-valued function
defined on the real plane is square integrable. The FT of s(x, t)
is defined by

§(k,w) = (2m)7 %5 // s(z,t)exp[—i(k - £ — wt)]d*z dt

B @)
in which w is the angular frequency, k is the wave number (or
spatial frequency) for the fields of oceanography and coastal
engineering, and k - * = k,z + k,y. Here, k, and k, are
the wave-number components in the - and y-domains, respec-
tively. The corresponding STCWT of the signal of interest is
defined as the inner product of the signal s(x,¢) and the trans-

formed wavelet — as follows:
a,c,80;0,7
1 1 N
Sla,c,8;b.7) = — (4 — |s(z,¢ 3
et == (v L BE0) O

where the complex-valued wavelet function , which

a,c,0;0.,7 .
is localized in the space and time domains, is the shifted,
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Fig. 2.

scaled, rotated, and speed-tuned version of the prechosen
mother wavelet ¢/(«,t). The mother wavelet was defined as
follows in [14] and [15]:
—3/2

(4 = (Evt):a

a,c,&;b,‘r
Xt ((L101/3’I‘g Az — Z), a "t — T)) .4

The translation parameters b and 7 correspond to the given
position of the wavelet as it shifts through the space and time
domains. The scaling parameter a, which is a nondimensional
scale factor, is associated with the size of the object of interest
and operates in the same way in both time and space. The factor
a ! is a normalization that gives all dilated versions of the
mother wavelet the same energy, i.e., it is the ratio of the size of
the dilated wavelet to the size of the mother wavelet. The speed
tuning parameter ¢ is directly associated with a proportional
change of the velocity magnitude of the moving wavelet, while
the velocity orientation remains unchanged. This speed tuning
parameter is a key factor in the detection of the wave phase
speed and wave group velocity from the sea-surface image se-
quences in our study. The rotation matrix r_g with a rotation
angle /, which rotates the spatial coordinates of the wavelet
around the temporal axis, is usually defined as follows:
sin
cos ) ’

cos 6

T_g = .
¢ (sm@

0<6<2r. (5)

- 4-02
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- 106
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Inhomogeneous wave image with wave reflection, refraction, and shoaling.

Equation (3) can now be expressed as follows to display the
wavelet theory formula more clearly:

S’(aCHbT

qr) ( -1 71/5 R (1_ _ b) -1 2/5( T))
x s(xz,t)d*z dt (6)

where 1" is the complex conjugate of the mother wavelet func-
tion 1. Different mother wavelet functions have been proposed
and applied for various applications by different studies. Re-
gardless of the type of equation, all mother wavelet functions
must satisfy the following admissibility condition:

- 7A 2
c.¢:(27r)3// W“—’w)'d2kdw<oo (7)
Rk |wl

in which ¢)(k,w) is the FT of the wavelet function ().
To implement (6), we use a spatiotemporal Morlet wavelet as
the mother wavelet throughout the implementation procedures.
The well-known and most commonly used Morlet wavelet is
a directionally selective wavelet function that has been popu-
larly adopted as a wavelet transform for signal analysis [16] and
ocean signal analysis [17]. The spatiotemporal Morlet wavelet
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Fig. 3. Wave spectra S(k, #) and S(w, k), which were extracted from different locations of the inhomogeneous wave image from Fig. 2.

is defined in the following complex-valued form, as shown in x [exp(iwgt)exp(—0.5¢?) —exp(—0.5¢%) exp(—0.5w5) ]
[14]: ®)
(=, 1)

A typical anisotropy matrix A is defined as ¢ > 1, as follows:

exp(iko- A1 z)exp(=0.5/4 1. z|?)

. - —0.5
—exp(—0.5|A7" - z|?) exp(—0.5]k¢|?) A= [E 0] . ©)]



448

400

100 200 00 400 500 600
X (m)

Fig. 4. The wave group velocity estimated results from different locations of
the inhomogeneous wave image by the wavelet transform. The bold arrows in-
dicate the estimated results of incident waves; the thin arrows indicate the re-
flected waves.

Our previous study revealed that € = 1 is suitable for sea-
surface image analysis [18]. Alternatively, the mother wavelet
function can also be expressed in the wave-number frequency
domain as follows:

1/;(;, w) = (cxp(—0.5|A . ; — EO|2)

—exp <O.5(|A . E|2|E0|2)))
x (exp (—0.5|w — w()|2) — exp (*0~5(W2 + W(Q))))
(10)

in which ko = (ko,, ko,) and wo are the center wave number
and the frequency of the mother wavelet, respectively. Jordan
et al. [19] suggested that wy € [5, 6] to access the admissibility
condition of the wavelet function. Because of the similarity of
the mother wavelet function in the time and space domains, we

set the value of k¢ to lie within this range as well. However, the
direction of the wavelet function in the space and wave-number
domains is influenced by the nonzero values of kg, and k:oy .Be-
cause the matrix r_y defined by (5) was applied to control the
direction of the wavelet function, ko, can be set equal to zero. In

this paper, we use wy = 6 and ko = (6, 0) to analyze sea-sur-
face image sequences with the wavelet functions. In Section IV,
we will discuss the influence of the values of k¢ and wq on the
wavelet window widths in different domains.

If |ko| and wq are large enough (typically, |ko| > 6 and
wp > 6) the second terms in (8) and (10) are small enough

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 39, NO. 3, JULY 2014

to be neglected. Now, the Morlet wavelet can be simplified as
follows:

P(x,t) = exp(izo A7l Z)exp(—05]A71 - Z|?)

x exp(iwot) exp(—0.5t%)

(11)

in the spatiotemporal domain, or it can be equivalently simpli-
fied in the following manner:

Pk, w) = exp(—0.5|A- k — ko|?)exp (=0.5)w — wol?)

(12)
in the wave-number frequency domain. Both expressions ap-
proximate the modulated Gaussian or Gabor filters. Examples
of the real and imaginary parts of (11) in the spatial domain and
the transformed wavelets influenced by the rotation matrix r _g
at different angles are illustrated in [5, Figs. 1 and 2]. The cor-
responding wavelet of (12) in the wave-number domain is also
depicted in [5, Fig. 3].

The simplest algorithm for implementation of (6) is direct
numerical integration, but this approach is time consuming. A
better solution is to execute the STCWT by taking advantage
of the fast FT to compute the continuous wavelet transform ef-
ficiently in the wave-number (spatial frequency) frequency do-
main. Thus, the algorithm for STCWT in the spatiotemporal do-
main can be manipulated in the wave-number frequency domain
by

S(a,c,0: b,7)

1 /. .
RN <¢a”6‘6;377(k,w) é(k,w)>

x* (actPr_g - (E) u072/3w)§(z, w)}

X (’12;(10.) (13)
where 5(2 w) is the FT of 5(z, ), as defined in (2), and the
transformed wavelet in the wave-number frequency domain is
defined as follows:

b - (;M) = a®/% (acl/?’r,g ~ (E), ac’2/3w)

a,c,8;0,7
X exp (i<;-z+w7>).

In this process, the chosen mother wavelet z/A) in the spatiotem-
poral domain is converted into a transformed wavelet 1 -

a.c,8;:0,7

in the wave-number frequency domain by scaling «, shifting 7

(14)

intime and b in space, rotating ¢, and speed tuning ¢ to “match”

a particular wave component §(k p,, w,) of the signal.

To better explain the results obtained from image processing
by the STCWT technique, we must interpret several basic prop-
erties in detail. Equation (14) shows that the wave number can

be transformed from k into ac'/3r 4(k), and the frequency
can be transformed from w into ac=2/3w after scaling, speed
tuning, and rotating a wavelet. As shown in (12), wg and k¢ are
the frequency and wave number, respectively, at which the peak
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energy of the mother Morlet function occurs in Fourier space.
After transformation, the new peak energy of the transformed

Morlet wavelet is converted to a particular position (k,,w,),
which is defined as follows:

actPr_4 - (k) =ko

(L(:fZ/?’wp = wg.

(s)
(16)

Therefore, we could derive the STCWT frequency spectra
S(k,w) [instead of the 6-D representation S(a,¢,f; b,7)] of
the signal s(z,t) for each specific position of interest  at any
instant £ by employing the relations defined in (15) and (16).

B. Wave Group Velocity Estimation From STCWT

Here, we discuss the relationship between the STCWT results
and the ocean wave parameters. Before estimating the wave
group velocity, we must obtain the wave phase speed informa-
tion that describes the propagation speed of the surface wave
profile. The wave phase speed ;p and the wave group velocity
C, are derived from the frequency, wave number, and water
depth A, as follows:

Vy =

e (17)
k
1

L+ 2kh |—\ |
2 sinh(2kh) vrl

Because (13) is a representation with six parameters that are
directly associated with motion features, we can develop the
velocity relationship by combining (15) and (16) to produce

f—p:cr,ﬁ- (f—0> —>;p:cr,e-;0 (19)
ko
1
c,=-11
g 2( —I—

_ 1 1+
T2

This representation means that the wave phase speed ;p ofa
particular wave component of interest can be estimated by map-
ping the original velocity plane of mother wavelet moving with
velocity ; this mapping can be accomplished by an orienta-
tion change ¢ and a proportional change ¢ in its velocity mag-
nitude. The speed-tuning parameter ¢ is a scaling operator to
change the velocity plane of the mother wavelet to a new ve-
locity plane associated with the wave component of interest.

Equations (19) and (20) present the continuous functions, but
the sea-surface image sequences that are discussed in most ap-
plications consist of discrete data. To analyze these digital wave
image signals by the theory of STCWT, it is necessary to sample
the wavelet function. Jordan and Miksad [19] have presented a
method to sample a 1-D wavelet function for time series anal-
ysis. Because our study focuses on the issue of spatiotemporal
signals, we must discuss methods to sample higher dimensional
wavelet functions.

As shown in Fig. 1, a physical spatial series has sampling
space Az and a total number of sample points N,.. The total

&

(18)

2h_\ 5
sinh(2kh) ) VP
2kh

m) ler g - wal. (20

nondimensional space length is 2X, which is mapped for N,
points. The relationship between the dimensional and nondi-
mensional sampling spaces can be obtained from the number
of sample points of the wavelet function as follows:

[-X, X] « [0, N,Ax]. 21
Similarly, 27" is the total nondimensional length of the

wavelet function in the time domain, and N;At is the total
number of elements in the dimensional time domain

[-T,T] < [0, N:At]. (22)

Equation (19) can be written as follows:
- — TN Ax ”
vy, =0Ty ’UOXNtAt' (23)

As shown in (11) and (12), T' = X under the assumption that
e = 1. Then, (23) can be simplified as follows:

- — N, Az

'l}p:(,"l',g"l)()m (24)
s 2

and the wave group velocity C'; can be written as following the
discrete type

1

III. VERIFICATION BY SIMULATED SEA-SURFACE
IMAGE SEQUENCES

2kh o - |NwAm 25)
sinh(26h) ) \'" * VOV NAL )

For the sake of verifying the practicability of wave group ve-
locity estimation by the STCWT, different simulated sea-sur-
face image sequences were applied in our study. The simulation
methods and analysis results are shown here.

A. Regular Wave Image Simulation and Analysis

For the primary test, simplified regular wave image sequences
were simulated. Single direction regular waves that propagate in
the time—space domain were generated by

n(t,z,y) = Acoslk(zcosa + ysina) —wi]  (26)
in which A is the amplitude of the wave component, % is the
wave number, w is the angular frequency, and « is the incident
wave direction. Equation (26) describes the monoharmonic
waves in the spatiotemporal domain. Under the assumption of
linear waves, the input wave-number value is calculated by
the dispersion relationship, which describes the relationship
between the angular frequency w, the wave number %, and the
water depth ~
w = \/gk tanh(kh). @27

The phenomena of wave shoaling, refraction, and reflection
that control the 3-D transformation of waves as they approach
the shore are considered in the simulation of our study. The
equations for simulating sea-surface waves that are influenced
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by reflection, refraction, and shoaling are shown as follows
[20]-[22]:

n(t,z,y) = Ai[(cos(P + &;) + Kr cos(P + ¢; + &, )) cos(wt)
+(sin(P+e;)+ Kgrsin{P+e;+¢,)) sin(wt)]

(28)

A’I = AOKs (29)

Ko(w.y) = {tanh(kh(ay.y)) L) R R
o ' cosh?(kh(x,y))

P= /(kcosﬁ)d:r—l—kysinﬁ. 31

0

The parameters & and « were defined in (26), K is the
shoaling coefficient, K is the reflection coefficient, ¢; is the
phase of the incident waves, &, is the phase of the reflected
waves, A4; is the amplitude of the incident waves, and h(z, y)
describes the bathymetry conditions in the space domain. For
the initial conditions of the regular wave case, a height of 1 m,
a direction of 135°, and a period of 7 s were used. We assumed
that there is a structure at the north edge of the wave field that
induces a reflection coefficient of K = 0.5. Because we are
analyzing digital images, the sampling parameters of the digital
images must be determined. In our study, the spatial resolution
of the image is 5 m/pixel, and the size of the image is 128
pixels x 128 pixels.

The simulated waves and the corresponding bathymetry
are shown in Fig. 2. For the time domain of the wave image
sequences, the time resolution of the wave image sequences
is 1 s. The surface image sequences in the time domain all
contain 128 continuous images. Based on (13), the result of

the wave analysis by STCWT is S( b, 7, 6; a. ¢), which can be
transformed into a spectrum S(E, t;w, k,6) by (15) and (16).
S(;, t;w, k, 6) represents the spectrum in the spatiotemporal
domain. The spectrum function S(w, k, #) represents the distri-
bution of the wave energy in the frequency and wave-number
domains. To represent these 3-D results, we integrate the func-
tion S(w, k,d) over the frequency and direction domains to
obtain S(k,#) and S(w, k), respectively. Fig. 3 shows S(k, 8)
and S(w, k) from different locations in Fig. 2. As shown in
Fig. 2, three different locations with different bathymetry con-
ditions were selected for identification of the spectral features
from the inhomogeneous sea surface.

Based on the linear wave theory, the wave number and the
wave direction should change as the water depth in the shallow-
water area changes because of wave shoaling and wave refrac-
tion. The wave frequency, however, should be constant during
wave propagation. The left-hand side of Fig. 3 shows that the
energy distribution of S(%, #) moves from low wave number to
high wave number as the water depth decreases. The energy dis-
tribution of the direction domain is also influenced by different
locations as a result of wave refraction. The right-hand side of
Fig. 3 presents the S{w, k) results from different locations. Un-
like the energy distribution in the wave-number domain, the en-
ergy distribution in the frequency domain is constant. The two
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Fig. 5. (a) Wave phase speed accuracies; (b) wave group velocity accuracies;
and (c) wave direction accuracies from different locations on the inhomoge-
neous wave image by wavelet transform.

energy density groups in each spectrum represent the energy
from the incident and reflected waves.

The right-hand side of Fig. 3 presents the spectra in the
wave number and frequency domains. We also present the
theoretical dispersion relation curves corresponding to different
bathymetry conditions. We observed that the energy from
every S(w, k) was consistent with the corresponding dispersion
relation curve, which means that the relationship between w
and £ from the wavelet results was consistent with that of the
linear wave dispersion theory.
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Fig. 4 presents the wave group velocity estimation results
from the entire inhomogeneous sea-surface image. The arrows
on the image indicate the wave group velocity and wave direc-
tion results estimated by the STCWT. To verify the accuracy of

our results, we calculated the deviations between the simulated
parameters and the results from the STCWT.

Fig. 5 presents the accuracy of the wave phase speed, the
wave group velocity, and the wave direction from the entire sea
surface. The accuracies of these three subplots are more stable
along the z-axis than along the y-axis. The variant bathymetry
causes the varying accuracies along the y-axis. In addition, the
maximum difference between the simulated and estimated wave
group velocity values was approximately 10% in this case. The
errors of the estimated wave direction were all less than 10°. We
noticed that the accuracy of the wave group velocity results was
poorer than that of the wave phase speed results. Based on (18),
the wave group velocity is derived from the wave number %, the
water depth %, and the wave phase speed v p- To increase the
accuracy of the wave group velocity, the accuracies of &, h and
;p must be improved. Wu et al. [18], [23] also proved that the
image resolution and wave image size are critical to improve-
ment of the estimated wave parameters.

B. Irregular Wave Simulation and Analysis

The STCWT presents reasonable results for the estimation of
wave parameters in the case of regular waves. However, real
ocean waves in nature are always irregular. In addition to the
case of regular waves, we also discuss wave group velocity es-
timations for the irregular wave case by STCWT. The irregular
wave simulation is based on the wave spectrum S(f). Con-
sidering the propagation of waves in shallow water, the TMA
spectrum S(f) was applied here. The TMA spectrum is in-
tended for used in water of finite depth [24] and is derived
from the JOint North Sea WAve Project (JONSWAP) spectrum
S;(f). The name TMA derives from the names of the data sets
Texel, Marsen, and Arsloe [25]. These equations are described
as follows:

S(f) = ¢S;(f) (32)
_ tanh2(/s:h,)
? = T (2kh) fsinb (24h)] (33)
Si(f) = ﬁ H2T,
X CXp (—1.25(Tpf)*4) WCXP[*(f/fpfl)z/%g] (34)
fr=1/T, (35)
_foor, f<f
”_{009 P> (36)
0.0624
8 = -
0.230 4+ 0.0336y — 0.185(1.9 + )1
x [1.094 — 0.01915In~]. (37)

As shown in (32) and (33), ¢ is a function to modify the JON-
SWAP spectrum to adjust the spectral features in the shallow-
water area. From (34)—(37), T, is the peak wave period, and f,
is the peak wave frequency. Goda [26] reported that the value
of ~y is within the range from 1 to 20, and v = 9 in this study.
Because of the multidirectional nature of ocean waves, a Mit-
suyasu-type directional spreading function G(f,f) was used
[26]

() (/.8)
0 cos™ (6 — 6,)/2)

(3%

G(f 9) (39)
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T

G(f,0)dg =1 (40)
1 o 1 %(s+1)
— _225—1
Go= 7 (25 +1) @1
SHI&X(.}L’/JCP)S? .f S fp
s = SoE . : 42
: { swn /1) 2% 1> 1, “2)
Smax = 10  wind waves
Smax = 25 swell with short decay distance (43)

Smax = 75 swell with long decay distance.

In (39), 6, is the dominant wave direction. The parameter s
controls the angular distribution of the waves and is known to
vary with the frequency. The spreading parameter s,,,,x changes
with different wave cases. In our paper, s, 1S set equal to 10,
which describes the case of wind waves. The relationship be-
tween the amplitude of the waves (A) and the directional spec-
trum is shown in

wtdw 64+df

ij 20: S(w, ) AwAf = %A?

For the continuous frequency function, the distributions of
both the wave frequency and the wave number should be from
—oo ~ 0. However, the wave image signals are composed of
discrete data. We have divided the frequency and wave number
into n parts, and the direction was divided into m parts

(44)

Wy, = MW (45)
kran, = kn cosbp, = nk;cosb,, (46)
knen, = knsind,, = nk;sinf,,. (47)

In (45)—(47), w; and k; are the initial conditions of the fre-
quency and wave number, respectively. Considering negative
wave frequencies, the discrete amplitude of the waves (A,,) is
expressed as follows:

N/2 M
An= >0 3 /S(wn. ) AwAS. (48)
n=—N/2m=1
The discrete wave function is shown in
n(t,z,y)
N/2 M
= > > VS(wn, ) AwAG
71,:—1\/'/2 m=1
x (cos (nwt — kmpn, & — kmn, Y — €mn) ) - (49)

To speed up the wave image sequence simulation, the fast
FT was applied here [11]. We added the imaginary part of the
wave components into (49) and derived it by the character of
the trigonometric functions

N/2 M

DY

n=—N/2m=1

Swn, O ) AWAG

X [COS (nWt - k'mnm xr — k'rnny Y- Em'n)

+isin (nwt = kmn, T — Fyn, ¥ — emn)]
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N/2 M

= Y 3 [VEGnAmune

n=—N/2m=1
x(cos (Emn, T+ Emn, Y+Emn)
—isin (k,,mm T+kmn, y+€mn) )
X exp(inwt)]

N/2

= Z (an — iby) cxp(inwt)

n=—N/2

(50)

M
Oy, = S(wy,, 0, ) AwAl
PORVEICINS)

m=1
X cos(kp(xcos by, +ysinbdy,) + emn)

M
bn - Z

m=1

x sin(kn (2 cos by, + ysinby,) + emn)-

(51
S(wny Om ) AWAS
(52)

Now, (50) can be presented as the inverse fast Fourier trans-
form (IFFT) of the function («,, — ib;, ), and we can simulate the
irregular wave image sequences by the fast FT algorithm

N/2

Z (ay, — iby,) exp(inwt) = IFFT(a,, — ib,,).
n=—N/2

(53)

Equation (49) differs from to (53); 3-D data are calculated
in (49) to simulate wave image sequences, but only 2-D data
are calculated in (53). The simulation proceeds faster by (53)
than by (49). This paper simulates the irregular wave image se-
quences by the aforementioned methods. The directional spec-
trum that is the input for (49) and (53) is shown in Fig. 6. Ini-
tial wave conditions with a 1.5-m significant wave height, 225°
dominant wave direction, and 7-s mean wave period were sim-
ulated. The simulated irregular wave image is shown in Fig. 7.

The wave spectra S(k,8) and S(w, k) from different loca-
tions of the irregular wave image are shown in Fig. 8. The en-
ergy peak of S(k, ) moves to high wave number gradually as
the analysis location moves to shallower water. Compared with
the analyzed results from the regular wave case, the S{(k, #) an-
alyzed from the irregular wave case exhibits a slightly scattered
energy distribution. Because of the superposition of different
wave components with random phases, the spectra from the ir-
regular waves are more random and scattered than the spectra
from regular waves. Similarly to S(k, #) in Fig. 3, the energy
distribution from each S(w, k) is also consistent with its disper-
sion relation curve.

The estimated wave group velocities at different locations are
presented in Fig. 7. Fig. 9 shows the differences between the
simulated parameters and the estimated values of the various
wave parameters. The results show that the differences between
the irregular cases are more evident than those between the reg-
ular wave cases. However, these larger differences in the irreg-
ular wave cases do not imply poor estimation accuracy. As we
mentioned above, the irregular waves are superposed by dif-
ferent wave components with random phases. This superposi-
tion produces higher variability of the wave features from the
irregular waves. From the results in Fig. 9, we also observed
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Fig. 7. Simulated irregular wave image and its corresponding bathymetry. The arrows on the wave image represent the wave group velocity and direction results

estimated by STCWT.

that the differences between the simulated parameters and the
estimated values are obvious at the locations near the edges of
the sea-surface images. This visible difference is the impact of
the image edges, which is related to the leakage of the wavelet
transform [5].

IV. DISCUSSION

In addition to our studies, a large number of other studies
have assessed the predominance of wavelet theory in different
applications. No matter what types of data are analyzed, it is
necessary to identify the capability of nonstationary and inho-
mogeneous signal analysis in different situations. Because our
study analyzed the spatiotemporal sea-surface image sequences,
we need to determine the ranges of the wave field analyzed by
the wavelet functions under different wave conditions. The an-
alyzed range of the wave field is called the width of the window
function by some authors [27]. It is related to the nearly nonzero
part of the wavelet function. The wavelet window width im-
plies the stationary and homogeneous range inside the entire
wave image. Based on the features of the wavelet functions, the
wavelet method does not require the preselection of a window
width and does not have a fixed time—frequency window over
the time—frequency space. The time and space window widths

in the time and space domains can be defined by the standard
deviation (o and o) of the mother wavelet function [19]

= SR IOC AN
e[ (w(%)) worar) oo

e (@Y, )
o= ./_oo <JJ_ < 7 (@)? dw )) (@)l de

in which 9(t) and () are the mother wavelet function in the
time and space domains. The wavelet window widths in the fre-
quency and wave-number domains can be defined by the stan-
dard deviations (o, and ¢y, ) of the mother wavelet function in
the frequency domains

0.5

(55

0.5
oo > wlp)de’
o= ([ s ) s
(56)
0.5
oc (k)2 by
Ok, = /Oo<kmffog|£();i)|)2|dki ) (ke )| s
(57)
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Fig. 8. The wave spectra S(k. €) and S(w, k) from different locations of irregular and inhomogeneous wave image sequences.

Our previous study [18] has revealed that the wavelet window  ferent transformed wavelet functions imply different window
widths are approximately seven times the standard deviations of ~ widths. To analyze the different wave components in the entire

the mother wavelet functions in the different domains. The dif-

sea-surface image, different wavelet functions from the mother
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Fig. 9. (a) Wave phase speed accuracies; (b) wave group velocity accuracies;
and (c) wave direction accuracies from different locations of inhomogeneous
wave image sequences by STCWT.

wavelet with different parameters are used. Figs. 10 and 11
present the window widths in different domains for different
wave analysis cases. Because the wave image analysis is dis-
crete, the wave image sequence number, image size, time reso-
lution, and space resolution are all factors that determine the
wavelet window width. This paper uses the same image pa-
rameters conditions as those used to simulate the wave field in
Section III.

As shown in Fig. 10, the wavelet function provides a wider
window in the time domain for the long wave period case, and
the wavelet function in the frequency domain is a narrow band
spectrum. Similar to the results of Fig. 10, Fig. 11 shows the

@ (b)
300 . : .

---Tw=20s

The wavelet window width in time domain (s)

The wavelet window width in angular frequency domain (rad/s)

Fig. 10. Wavelet window widths in (a) time and (b) frequency domains under
different ocean wave period conditions (77, ).
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Fig. 11. Analyzed ranges in (a) space and (b) wave-number domains under
different ocean wavelength conditions (L., ).

window widths in the space and wave-number domains. To an-
alyze the long wavelength case, the wavelet function provides a

wider window in the space domain. In addition, wy and k¢ are
the key parameters to change the window width of the wavelet
function. To analyze highly nonstationary or inhomogeneous

wave image sequences, lower values of w or k¢ are suggested.

However, higher values of wy and k are necessary to obtain
high-resolution results in the frequency domain. To estimate the

wave parameters accurately, different values of wy and kg in
the mother wavelet functions must be considered for different
wave situations. By observing cases of long wave periods, we
have observed that the relationship between wy and the wavelet
window width in the time domain is not linear. A similar phe-
nomenon is also observed in the case of Fig. 11(a). This result
is caused by the limited sizes of the image sequences. Figs. 10



456

and 11 are estimated from the 128 pixel x 128 pixel sizes in
the space domain and the 128 continuous image sequences in
the time domain. This size is inadequate for the longer wave
cases. To obtain accurate results from these cases, it is neces-
sary to enlarge the size of image sequences in both time and
space domains.

V. CONCLUSION

The wave group velocity is critical to the discussion of the
mechanics of ocean waves and the rate of wave energy motion.
It is possible to estimate this parameter from the spatiotemporal
sea-surface features by an applicable spectral transformation.
To extract the spatial information from the inhomogeneous sea
surface, this paper attempts to apply the theory of the STCWT to
estimate the wave group velocities and discuss their accuracies.
The achievement of this study is useful for understanding the
wave mechanics of inhomogeneous water areas.

Because the original STCWT theory was not used for wave
group velocity estimation from sea-surface image sequences,
our study has developed an algorithm to derive the wave group
velocity of ocean waves from the STCWT and linear wave
theory. To verify its correctness and practicability, different
kinds of simulated sea-surface image sequences were analyzed
by the STCWT. The detailed algorithms used to simulate reg-
ular and irregular sea-surface image sequences were presented
in our paper. Because of the superposition of different wave
components with random phases, the accuracy of the simulated
parameters and estimated values in the regular case were higher
than the accuracy of the parameters and values from the irreg-
ular wave case. However, the spectral results from the different
simulated wave cases confirm that the energy distribution was
consistent with the linear wave theory, which we used in the
irregular wave simulation.

To determine the applicability of the STCWT algorithm to
inhomogeneous wave analysis, this paper also discusses the an-
alyzed ranges (wavelet window widths) of the wave field under
different wave conditions. It should be noted that the image se-
quence number, image size, time resolution, space resolution,
and wq and EO parameters are all factors that influence the re-
sults of the wavelet analysis. After the study and discussion of
these cases, we can conclude that the analysis of inhomogeneous
sea-surface image sequences by the STCWT is feasible.
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