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Abstract 
Accurately forecasting the ocean waves during the typhoon events is extremely important to mitigating and minimising 
the potential damage to the coastal infrastructure and to protecting the coastal communities. This is particularly relevant 
to the costs around Taiwan, as annual occurrence of typhoons and their severity are evidently increasing. Due to the 
complex hydro-meteorological interaction and uncertainties from the modelling systems, ensemble approaches have 
recently been widely used to provide further insights into the model results for quantifying uncertainties and improving 
accuracy of the wave forecasting. This paper presents an optimisation on the model-ensemble results for real-time wave 
forecasting. The proposed approach applies the “locally weighted learning” algorithm to the wave heights predicted by 
the WAVEWATCH III wave model, which is driven by four different weather models (model-ensembles) to optimize the 
weightings used in calculating the resulting wave height from four model-ensembles. By doing so, the model behaviour 
in response to the wind forcing can be captured and reflected by the weightings. The results show that, in comparison 
with the measurements at selected wave buoy locations, the optimised weightings, obtained from the training process, 
can significantly improve wave forecasting from the standard mean values, in particular, for the typhoon-induced peak 
waves. The results also show that the algorithm is easy to implement and practical for real-time wave forecasting. 
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Introduction 
Predicting and understanding ocean waves are extremely 
important for ocean shipping, fisheries, as well as coastal 
protection and coastal zone management. In particular, 
the typhoon-induced waves can cause huge damages to 
properties, infrastructures and human lives. The 
catastrophic consequences of the typhoon related events 
have often been seen and reported in Taiwan in recent 
years. Although it is almost impossible to completely 
avoid the damages caused by typhoons, more accurately 
predicting and forecasting the ocean waves becomes ever 
more important to mitigating and minimizing the impacts 
from typhoons. However, due to the complex 
hydro-meteorological interaction and uncertainties from 
the modelling systems on the forcing conditions and 
modelling techniques, as well as the uncertainties of other 
physical parameters, improving the predictions and 
forecasts can be difficult and challenging. In recent years, 
the ensemble approaches have been widely used in 
improving the quantification of the uncertainties from the 
modelling systems and physical parameters. In wave 
forecasting, the ensemble approaches can be generally 
classified into two types: parameter ensemble approach 
and model ensemble approach. In both types, a particular 
wave model is used to transform the atmospheric forcing 
conditions (winds) into wave fields, but the atmospheric 
forcing conditions can be generated in different ways. 
The parameter ensemble approach is to use the 
equally-distributed physical parameters to generate 
ensembles of forcing conditions using the same weather 

model. For example, in the work reported by Chen et al. 
(2010) and Zou et al. (2013), 50 ensemble winds fields 
were used as the surface forcing for the tide-wave model 
POLCOMS (Osuna et al., 2004) to produce the ensemble 
results of waves and storm surge. Then, statistical 
analysis was carried out to quantifying the uncertainties 
of the model results in both hydrodynamics and 
morphodynamics. In contrast, the model ensemble 
approach uses different weather models to generate 
surface forcing conditions for the wave model, as each 
weather model is calibrated to its optimal operational 
conditions. In the work of Fan et al. (2013 & 2014), the 
WAVEWATCH III model was used to transform the wind 
fields obtained from four weather models, namely AVN, 
JMA, NFS and WRF, developed by different institutions, 
to model the ocean waves surround Taiwan during three 
typhoon events. The model results were analysed and 
mean wave heights and standard deviations were 
published as the real-time forecasting, together with the 
observations from a number of wave buoy deployed off 
the Taiwan coasts. In general, the mean wave heights 
calculated from four model ensembles agree with the 
observed wave heights from the wave buoys, but it was 
clear that during the typhoon events, the peak wave 
heights were under-represented by the standard mean 
wave heights. As the peak wave heights during typhoon 
events often is the most important parameter in decision 
making, therefore it becomes desirable to improve the 
methodology used to generate the resulting wave heights 
from the ensemble wave heights. 
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In this paper, a “locally weighted learning” algorithm is 
proposed to optimize the weightings applied to the each 
ensemble wave height, in order to capture the different 
model behaviours in response to the wind conditions and 
thus to improve the wave height forecasting. The study is 
based on the data (predicted wave heights) presented in 
Fan et al. (2013 & 2014) for three typhoon events 
occurred in 2011 and 2012. Whilst the full details can be 
found in Fan et al. (2013 & 2014), for the sake of clarity, 
the wave model WAVEWATCH III and the 
computational domains used are briefly described here.  
 
Modelling System and Computational Domains 
WAVEWATCH III is a third generation wave model 
developed at NOAA/NCEP (Tolman 1997, 1999, 2009) 
in the spirit of the WAM model (WAMDIG 1988, Komen 
et al. 1994), which has been widely used to simulate wave 
field using the wind data from various weather models.  
 

 
Fig. 1  Computational domains for WAVEWATCH III 
(▲Buoy locations) 
 
In the work of Fan et al. (2013 & 2014), a nested 
computational framework, as shown in Fig 1, was used. 
The coarse grid domain was used to provide the wave 
boundary condition to fine grid domain. The resolutions 
of the coarse and fine grids are 0.5º and 0.25º respectively. 
The modelling system was driven by the wind fields from 
four weather models, namely, AVN (NCEP Aviation 
Model), JMA (Japan Meteorological Agency), and NFS 
(Non-hydrostatic Forecast System). The modelling 

system was applied to three typhoon events: Typhoon 
Jelawat occurred in 2012, and Typhoons Nanmadol and 
Meari in 2011. 
 
The computed mean wave heights using the standard 
averaging (i.e, equally weighted, ¼) as indicated in Fan et 
al. (2014) show a general agreement with the measured 
wave heights. The comparisons at selected locations 
showed that the forecasted wave heights agree better for 
the low waves. However, for high waves, in particular 
those induced by typhoons, the peak wave heights were 
under-forecasted using the mean ensemble values. Those 
peak waves, which in fact will have the most significant 
impacts on the coastal areas and cause the most severe 
damages, need to be predicted and forecasted more 
accurately in order to mitigate and minimising the 
impacts. Close examinations showed that the wave 
heights generated by different wind fields behaved 
differently in response to the winds. Using the equal 
weighted averaging for the mean wave heights may be 
inappropriate and also incapable in capturing the peak 
waves. To this end, an optimisation is proposed in this 
study to find out the optimised weightings to improve the 
representation of the waves generated from each weather 
models, especially the peak waves. 
 
Optimization 
In this study, optimisation is based on the concept of 
"locally weighted learning" (Atkeson et al., 1997), which 
is briefly described here. Assuming that we have a set of 
wave heights generated by different models (hi, i=1, N; 
where N is number of the models), the mean wave height 
can be calculated with a weighted averaging as: 

∑
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where, H = mean wave height; hi = wave height from ith  
model ensemble; and wi = ith weighting. Where wi = 1/N, 
Eq (1) is for the standard averaging. For optimization, 
weightings, wi (i=1, N) are determined by the “locally 
weighted learning” algorithm in an attempt to optimise 
the weightings for a better representation of the resulting 
wave height. With a set of measured wave heights at a 
particular location, a cost function can be established as:  
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where, M = number of the measured wave heights; H = 
averaged wave heights calculated by Eq. (1), Ĥ = 
measured wave heights, and J = cost function. With the 
Least Mean Squares (LMS) algorithm, the gradient of the 
J can be estimated as: 
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and wi can be estimated with the gradient decent 
algorithm from Eq. (3). Writing the algorithm in matrix 
format for the brevity yields the following: 

 (4) 

 

Taitung Open  
Ocean Buoy  

Pradas Buoy 
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where, w = matrix of weightings (N); h = matrix of the 
modelled wave heights (M×N); and Ĥ = matrix of 
measured wave heights (N). 
 
In this study, optimisation is carried out by training first, 
using the results obtained as described previously during 
Typhoon Jelawat and then the optimised weightings are 
applied to other two typhoon events: Nanmadol and 
Meari. 
 
The optimisation is demonstrated at two buoy locations: 
Taitung Open Ocean and Pratas Data Buoy stations, 
where the former is located at deep water of more than 
6000 m, and the latter is located close to shore as shown 
in Fig. 1. 
 
Training with Typhoon Jelawat Data 
Using Eq. (4) together with the measured wave heights, 
the weightings at any location can be obtained from a 
training process. In this study, the measured wave heights 
at Taitung Open Ocean and Pratas Data Buoy stations 
during Typhoon Jelawat are used. This includes 128 valid 
hourly data points out of 144 hourly measurements from 
0:00 24th Oct 2012 to 0:00 30th Sept 2012, with the 
observed peak wave height up to 19 m, as shown in Fig. 
2(a). The weightings obtained from the training are list in 
Table 1. It can been seen that the weightings are different 
from 1/4, the value commonly used for standard 
averaging, particularly for AVN and WRF models at 
Taitung Open Ocean Data Buoy Station, reflecting the 
fact that AVN predicts wave heights reasonably well and 
WRF performs poorly at this location, as shown in Fig. 
2(a). 
 

(a) 

(b) 
Fig. 2  Time series of the computed and observed wave 
heights used for training during Typhoon Jelawat at 
Taitung Ocean Buoy location: (a) with wave heights 
computed based on wind fields from 4 weather models 
(AVN, JAM, ECMC and WRF); (b) with mean and 
optimised weighted wave heights only 
 
Table 1  Weightings from training at Taitung Open Ocean 
and Pratas Data Buoy Stations 

Station AVN JMA RCMC WRF 
Taitung 0.9549 0.2751 0.2667 -0.6453 
Pratas 0.3855 0.4937 0.3081 -0.1307 

 
 

To examine the accuracy of the optimised weightings as 
listed in Table 1, these weightings are then applied to 
forecast the wave heights Typhoon Jelawat, which itself 
was used in training. As shown in Fig. 2(b), it can be 
clearly seen that with the optimised weightings, the 
forecasted wave heights (Hopt) are much close to the 
observed wave heights (Obs), and the peak wave height 
predictions have been improved significantly, despite the 
slight under-predictions, as expected. 
 
Fig. 3 shows a scatter plot of the observed wave heights 
vs the standard mean and optimised weighted average 
wave heights. It also shows improved averages when 
using the weightings obtained, particularly for large 
waves, as indicated by a cycle. 
 
For Pratas Data Buoy Station, the same training process 
is followed and the optimised weightings are also listed in 
Table 1. Using these optimised weightings, the wave 
heights can also be calculated in the same manner. 
 

 
Fig. 3  Scatter plot of mean wave heights (Hmean) and 
optismised weighted average wave heights (Hopt) vs 
obsevered wave heights (Obs) at Taitung Open Ocean 
Data Buoy Station 
 

(a) 

(b) 
Fig. 4 Time series of computed and observed wave 
heights used for training during Typhoon  Jelawat at 
Pratas Buoy location: (a) with wave heights computed 
based on wind fields from 4 weather models (AVN, JAM, 
ECMC and WRF); (b) with mean and optimised weighted 
wave heights only 
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Fig. 4 shows the comparison of model predictions with 
the standard mean, optimised weighted wave heights and 
the measurements. At this station, both models AVN and 
JMA performed equally well, whilst WRF still performed 
poorly, see Fig 4(a), which are reflected by the 
weightings. Fig 4(b) shows the improvements of the 
optimised weighted average wave heights for large waves. 
The scatter plots (Fig 5) also shows the improved average 
wave heights. 
 
For other typhoon events: Nanmadol (Aug 26, 2011) and 
Meari (June 22, 2011), the weighted wave heights with 
the optimised weightings given in Table 1 are shown in 
Figs 6 and 8. It is clear that at Pratas, where the wave 
heights during the typhoons are generally smaller than 
those at Taitung Open Ocean Data Buoy Station, the 
optimised weighed averages are better than the standard 
means.  
 
The large waves for Typhoon Meari have also been well 
re-produced by the weighted averages, but for Typhoon 
Nanmadol, the weighted averages are generally slightly 
higher than the measurements, which nevertheless 
appears to be acceptable. On average, as shown in Figs 7 
and 9, the weighted averages are higher than the 
measurement, but with a small margin. 
 

 
Fig. 5  Scatter plot of mean wave heights (Hmean) and 
optismised weighted average wave heights (Hopt) vs 
obsevered wave heights (Obs) at Pratas Station 
 

(a) 

(b) 
Fig. 6 Time series of stardard mena and optimised 
weighted average wave heights at Taitung Ocean Station 
(a) Typhoon Meari; (b) Typhoon Nanmadol. 

(a) 

(b) 
Fig. 7  Scatter plot of mean wave heights (Hmean) and 
optismised weighted average wave heights (Hopt) vs 
obsevered wave heights (Hobs) at Taitung Station for: (a) 
Typhoon Meari; (b) Typhoon Nanmadol 
 

(a)

(b) 
Fig. 8  Time series of stardard mena and optimised 
weighted average wave heights at Pratas Station (a) 
Typhoon Meari; (b) Typhoon Nanmadol. 
 
The results clearly show that the "locally weighted 
learning" algorithm is applicable to optimise the model 
ensemble results and provide improved wave forecasting 
in the coastal waters of Taiwan. The algorithm is efficient 
and easy to implement at particular locations, and the 
weightings can be updated progressively for real-time 
wave forecasting. 
 
However, it should be borne in mind that the examples 
presented in this paper are the results from a short period 
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training, just for around 6 days. It is expected that the 
results can be further improved if the training is carried 
out using longer time series of the model results, which 
will enable to examine fully the variation of weightings 
with different wave height ranges as an on-going study. In 
addition, different optimisation algorithms are being 
explored to deal with the complex hydrodynamic 
processes. 
 

(a) 

(b) 
Fig. 9  Scatter plot of mean wave heights (Hmean) and 
optismised weighted average wave heights (Hopt) vs 
obsevered wave heights (Hobs) at Pratas Station for: (a) 
Typhoon Meari; (b) Typhoon Nanmadol 
 
Conclusions 
An optimisation has been applied to the model ensemble 
results obtained from the WAVWWATCH III model 
forced by the surface winds generated by four weather 
models. The "locally weighted learning" algorithm was 
implemented to optimise the weightings for each model 
results. The optimised weighted averages were calculated 
and compared with the standard mean wave heights and 
measurements at Taitung Open Ocean and Pratas Data 
Buoy stations during three typhoon events (Jelawat, 
Nanmodol and Meari) in 2012 and 2011. Typhoon 
Jelawat data at two location (Taitung Open Ocean and 
Pratas) was using in training. The results show a 

significant improvement with the optimised weighted 
averages over the standard means as previously used, 
particularly for large typhoon-induced waves. It is clear 
that the proposed optimisation algorithm is well suited 
the real-time wave forecasting. 
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