第 35 屆海洋工程研討會論文集 國立中山大學 2013 年 11 月 Proceedings of the 35th Ocean Engineering Conference in Taiwan National Sun Yat-sen University, November 2013

週期波於海堤附近之黏性流場演變 張育誠¹ 邱啟敏² 劉冠亨³ 林俊遠⁴ 陳志欣⁵黃清哲⁶

¹國立成功大學水利及海洋工程學系碩士生 ²國立成功大學水利及海洋工程學系博士生 3國立成功大學水利及海洋工程學系碩士 4國立成功大學近海水文中心助理研究員 5國立成功大學水利及海洋工程學系博士後研究員 6國立成功大學水利及海洋工程學系教授

摘要

本文以二維波浪數值模式,模擬週期波入射直立堤,以及堤面坡度1:2與1:5的斜坡堤 時,堤前黏性流體的波流場特性。為模擬黏性流體,模式求解二維時變的雷諾平均方程式 (Reynolds Averaged Navier-Stokes equations, RANS) 及紊流模式 (*k – E* model)。旨在探討波浪 入射至不同堤面坡度之海堤時,其溯升及溯降期間的波浪碎波過程、堤前駐波流場演變、堤面 波壓以及堤前底床剪應力分佈等特性。在穩定狀態下,週期平均流場會有穩環流胞及水下逆流 等現象。

關鍵詞:雷諾平均方程式、質點等位函數法、修正型沉浸邊界法、駐波、穩環流胞

The Characteristic of Viscous Flow Field Induced by Periodic Wave Near Seawalls

Yu-Chen Chang Chi-Min Chiu Guan-Heng Liu Chun-Yuan Lin Chen Chih-Hsin Ching-Jer Huang

* Graduate Student, Department of Hydraulics and Ocean Engineering, National Cheng Kung University

ABSTRACT

In this study, a numerical wave scheme is applied to investigate the viscous flow fields induced by periodic waves propagating on three different seawalls, involing vertical wall and steep seawalls with slope of 1:2 and 1:5. A two-dimensional Reynolds Averaged Navier-Stokes equations and $k - \varepsilon$ turbulence model are developed to simulate the viscous flow field near seaealls. The free-surface evolutions, the wave pressure on the seawalls, the bottom shear stress prior to seawalls and the time-averaged flow field are disscused. An accompanying steady recirculating cells were observed in the time-averaged flow field of standing wave. However, breaking wave leads to an undertow on the seawall surface.

Keywords: RANS; particle level set method; inproved immersed boundary method;

standing wave;recirculating cell

一、前言

為保護沿岸居民的生命財產安全,台灣本島的 禦潮設施建置率極高(如堤防、護岸及離岸堤等), 海堤可防止海水入侵陸地、阻擋波浪衝擊及保護沿 海環境。而近年來因氣候變遷影響及全球海水位上 升之問題,以及颱風帶來之暴潮巨浪極值增大,現 有海堤的設計標準可能需要重新探討。其設計規範 取決於波浪溯升的高度及在溯升過程中堤面所受波 浪作用的影響,因此如何有效降低溯升高,實爲保 護海岸及海岸結構物的重要議題。

根據台灣省水利局 1979 年的「海堤規劃設計手

冊」海堤之設計坡度約介於1:0.5~1:5之間。因此, 本文將以二維波浪數值模式對於直立堤,及堤面坡 度1:2與1:5的斜坡堤,進行模擬分析。

Carrier and Greenspan (1958) 以非線性淺水波 理論解析非碎波波浪傳遞於斜坡底床上之溯升。 Madsen et al. (1997) 求解 Boussinesq 方程式,證明 slot method 可有效模擬波浪於斜坡上的溯升,但在 與 Carrier and Greenspan (1958) 比較最大溯升高度 時卻有 10%的誤差。Kennedy et al. (2000) 亦求解 Boussinesq 方程式,在動量方程式中引進渦度黏性 係數 (eddy viscosity) 且考慮底床摩擦效應,結果與 實驗值符合。

觀測週期波之瞬時流場,有Tsuchiya (1971)利用超音波流速儀,量測水粒子速度剖面垂直分佈。 黃等人 (1988)應用單點量測的都卜勒雷射測速儀 (Laser Doppler Velocimetry,LDV)量測不同波浪尖 銳度之入射波在斜坡上的流場變化。Nadaoka et al. (1989)和Ting and Kirby (1994、1995、1996)則利 用光纖都卜勒雷射流速儀 (Fiber-optic Laser Doppler Velocimetry,FLDV)量測在斜坡上的碎波 流場演變,並探討在溢波 (Spilling)及捲波 (Plunging)發生時的紊流變化及水下逆流 (undertow)現象。

週期波對海岸結構物的作用具有長時間、往復性的特性。而堤前底床沖刷、堤面波壓等波浪作用 力則與波流場長時間的週期平均有關。本文將參考 過去研究中, Sumer and Fredsøe (2000) 探討週期波 與直立堤之交互作用,並繪製堤前完全駐波的週期 平均流場流線圖 (steady streaming),發現水下流場 與邊界層內存在對稱的穩環流胞 (steady recirculating cells) 如圖 1。

二、理論分析

本研究將利用完整的數值模式,求解二維時變的 雷 諾 平 均 方 程 式 (Reynolds Averaged Navier-Stokes equations, RANS) 及低雷諾數紊流傳 輸模式 (Low-Reynolds number turbulent model, $k - \varepsilon$ model),並結合等位函數法 (Level Set Method) 及質點等位函數法 (Particle Level Set Method),來模擬波浪遇到海堤後產生溯升 (run-up) 或碎波 (breaking water) 時,不可壓縮之黏性流體的運動情形及其複雜的自由液面變化。為了使本模式更適用於流固耦合的計算上,在描述海堤邊界的部分,引用本研究團隊所發展之方法,可正確模擬出固體邊界附近流場的變化情形,詳細可參考陳 (2011)。

模擬之數值水槽如下圖 2 所示,造波條件設定 為 Stokes 波二階解;流體之靜水深為 h_o ,波浪在時間t = 0時位於起始位置並由左向右移動。其數 值方法主要架構可分為下列三個部分:

水體部分: RANS 方程式、*k*-*ε* 紊流模式。
自由液面:等位函數法、質點等位函數法。

(3) 固體邊界:修正型沉浸邊界法。

圖 2 數值水槽示意圖

等位函數法使由 Osher and Sethian (1988) 所發展,用來處理複雜的自由液面變化。同時為提高等為函數的準確性,本研究進一步地引用 Enright et al. (2002) 提出之質點等位函數法 (Particle Level Set Method),並結合 Maeker-And-Cell 法追蹤質點的觀念。其詳細相關可參閱 Lin (2007)。

黏性流體在固體邊界上必須同時滿足固液界面 上之無滑移且不可穿透的特性,即在底床與結構物 邊界上流體速度須等於零。其相關理論請參閱陳 (2011)。

三、模式應用

3.1 波浪作用於斜坡之驗證

爲證明本模式在模擬波浪與海堤互制的準確

-234-

性,本文將模擬週期波在斜坡上溯升之模式驗證。 本節選取蔡等人 (1997) 觀測週期波入射斜坡式海 堤後發生捲浪型碎波 (Plunging breaker) 之波高變 化分佈,實驗水槽長 15 公尺,寬 0.5 公尺,高 0.6 公尺,離造波板 10 公尺處擺放坡度為 S = 1:5的斜坡式海堤。實驗水槽上游設置平推式造波機, 入射之波浪條件為:靜水深 $h_0 = 0.35$ 公尺,入 射波週期 T = 1.266秒,入射波高 $H_i = 0.05$ 公 尺,座標原點定於水平底床與斜坡式海堤之交點, 座標原點向右 (上) 定義為正。水槽佈置圖如 3.1 所 示。為比對實驗結果,數值模式採用與實驗相同之 座標系統,上游入射波浪條件採用二階有限振幅波 理論 (Second-order Stokes wave theory) 之波形與 流場邊界條件,以滿足上游造波條件。

圖 3.1 波浪入射斜坡式海堤之實驗水槽示意圖

圖 3.2 為本數值模式模擬斜坡式海堤堤前的波 高變化,並與實驗量測結果作比對結果,圖中符號 (●)為本模式計算結果,符號(○)為蔡等人(1997) 實驗結果,而實線(一)為 Shuto (1974)所提出之 淺化變形經驗公式。其比較結果可知,本模式數值 模擬結果與蔡等人 (1997)的實驗量測結果比對相 符,可適切反應堤前的部分駐波造成波高在空間上 的震盪分佈特性。

3.2 週期波與斜坡之交互作用

在實際的海岸問題中,當波浪衝擊海堤時,因 海堤設置位置之水深、波浪性質及海堤斷面形狀、 坡度等影響,使得波浪在海堤附近的流場亦有所不 同。而週期波的特性在於其波流場對海堤有長期且 規律性之影響,故本文將藉由探討週期波入射至海 堤之黏性流場,瞭解其波浪流場特性。

= キ つ 1	オーナーましたす	オートナンとい	ヤ/女/小 麻	い出てしっ	古公田
衣 3.1		実工レイエログ	又际什些	- (伊归ノIF	司和木

Slope (S)	т (s)	H; (m)	h. (m)	L (m)	H _I /L	Uı	R/H;	
Vetical							81.0	Ζ
1:2	1.266	1.85	8.35	2.00	0.025	4.7	2.82	3.1 6
1:5							1.96	1.26
Vetical							0.91	/
1:2	1.854	1.05	8.35	3.20	0.015	11.9	2.24	4.14
1:5							1.96	1.61
	Slope (S) Vartical 1:2 1:5 Vartical 1:2 1:5	Slope (S) T (S) Virtball 1.25 1:52 1.254 1:23 1.254 1:25 1.254 1:21 1.254	Slope (S) T (S) H _i (m) Vartbal 1.25 1.25 Vartbal 1.25 1.054 1:2 1.154 1.054 1:2 1.254 1.054	Slope (s) T (s) H _i (m) h _v (m) Vartical 1.26 1.26 0.36 1:5 1.154 1.454 0.355 1:21 1.154 1.154 0.355	Slope (S) T (S) H _i (M) h _m (M) L (M) Vettcal 1.254 1.655 0.55 2.009 1:5 1.054 1.055 0.355 2.009 Vettcal 1.154 1.055 0.355 3.239 1:5 1.055 0.055 0.355 3.239	Slope (S) T (S) H _i (M) h _w (M) L (M) H _i /L Vertical 1:2 1.256 1.056 0.055 2.000 0.025 1:5 1.056 0.055 0.0016 0.0016 1:2 1.056 0.055 0.0016 0.0016 1:5 1.056 0.055 0.0016 0.0016	Slope (S) T (S) H _i (M) h _v (M) L (M) H _i /L U1 Vartical 4000<	Slope (S) T (S) H; (M) H, (M) H, (M) L (M) H,/L V/ R/H; Vartical

*表示有碎波現象

本文模式上游週期波條件給定二階有限振幅波 理論(Second-order Stokes wave theory)之波形與 流場邊界條件,波浪由左至右入射至海堤。研擬兩 種不同*Ursell*數的週期波條件,配合三種不同的海 堤坡度共六組案例(Case 1~Case 6),各組案例的 海堤堤前地形均設定為水平底床,表 3.1 為本文案 例所選用的波浪條件及各種參數設定,其中,T為 波浪週期、 H_i 為入射波高、L為波長、 $h_0 = 0.35m$ 爲靜水深、S爲海堤坡度($S = 1: \cot \alpha$)。

3.2.1 週期波瞬時流場

圖 3.3、圖 3.4 為 Case1 規則波入射至直立壁時,不同時序列之結果。(a) 為自由液面與流場速度、(b) 為邊界層流場、(c) 為堤前底床剪應力、(d) 為堤面波壓。由自由液面與流場速度的變化可看出 波浪在直立堤前有駐波的現象發生。

當堤前流場之流速趨近於零(圖 3.3),此刻大 部分的水體動能皆已轉換為位能,自由液面溯升達 最高點,此時堤面發生最大正向壓力。波浪於堤面 溯降至最低點時(圖 3.4),堤前流場之流速遞減為 零,此時堤面發生最大負向壓力。由上述兩張圖的 流場與邊界層流場,可發現邊界層內流速分布與邊 界層外不同,此現象與傳統線性波理論形成駐波下, 底床流速為零有差異。邊界層內受到自由液面高程 差的影響而產生逆向壓力梯度(adverse pressure gradient),造成邊界層內流場(separation)產生分 離,驅使水體往壓力較小方向流動,而發生邊界層 內外流速分布不同之情形,此現象稱爲回流 (reverse flow)。因此,邊界層內的流速方向可直接 由自由液面的變化判斷得知。

圖 3.4 t^{*} = T 時, Ur = 4.7 週期波入射至直立堤
之模擬結果。(a) 自由液面與流場速度、(b) 邊界層
流場、(c) 堤前底床剪應力、(d) 堤面波壓。

3.2.2 週期波平均流場

為探討週期波浪長時間作用於海堤的波流場特性,本節選取穩定狀態 (steady state) 的流場資料加以分析討論,探討各條件下的週期平均流場 (time-averaged flow field)、邊界層內水平平均流速 剖面等特性。

於前言提出之過去研究中,Summer and Fredsøe (2000) 探討週期波與直立堤之交互作用,並繪製堤 前駐波平均流場所得之流線圖 (steady streaming), 發現水下流場與邊界層內存在對稱的穩環流胞 (steady recirculating cell) 結構,如圖 1 所示。

本研究模擬不同 Ursell 數之週期波入射至不同 坡度海堤, 觀察堤前週期平均流場。圖 3.5 為 Ur = 4.7 週期波入射至直立堤 (Case 1) 之週期平 均流場。由全域週期平均流場可知,當波浪達穩定 狀態時,波浪在堤前形成駐波狀態。其駐波流場會 存在對稱之穩環流胞 (steady recirculating cell) 結 構,波節與波腹間有封閉之循環流場。

圖 3.6 為 *Ur* = 4.7 週期波入射 *S* = 1:2 斜 坡堤 (Case 2) 之週期平均流場結果。由全域週期平 均流場可知,波浪在堤前形成部分駐波,堤面上亦 存在穩環流胞之結構。與直立堤相比,斜坡堤上的 穩環流胞結構略有不同,由於穩環流胞同時受到自

由液面的限制及斜坡堤的擠壓,造成規模較小且不 對稱分布。

圖 3.5 Case 1; (a) 全域週期平均流場、(b) 水平平 均流速剖面、(c) 邊界層內水平平均流速波面、(d) 堤面最大正(負)向波壓。

圖 3.6 Case 2; (a) 全域週期平均流場、(b) 水平平
均流速剖面、(c) 邊界層內水平平均流速波面、(d)
堤面最大正(負)向波壓。

圖 3.7 Case 3; (a) 全域週期平均流場、(b) 水平平 均流速剖面、(c) 邊界層內水平平均流速波面 (d) 堤面最大正(負)向波壓。

由圖 3.7 可知發生碎波時,其週期平均流場較 爲紊亂,駐波現象較不明顯,其流場中亦無發現穩 環流胞之結構。此外,當波浪碎波後會產生向岸的 衝擊射流,造成碎波區域之自由液面有強烈的向岸 質量輸送,爲平衡此區的質量傳送,沿著堤面有一 股較大的離岸流速,產生離岸之質量輸送即爲水下 逆流或暗流 (undertow)。

3.2.3 堤前底床最大剪應力

本節將比較不同坡度海堤前水平底床上各點的 剪應力變化。為了展示出各計算點相對於堤趾的水 平位置,在此定義堤趾處水平座標為 x/L=0,向 左為負。

圖 3.9 不同坡度堤前最大底床剪應力比較圖。 為比較週期波入射不同堤面坡度海堤引致堤前 底床剪應力大小之分佈情形,本文圖 3.8 、圖 3.9 展示波浪入射不同坡度海堤之堤前剪應力比較。在 堤趾處之最大正負向底床剪應力的絕對值皆為

S = 1:5 > S = 1:2 > VW。即由於波浪接近海 堤時會有部分水體產生反射,反射時所產生的負向 水平流速會抵消正向的水平流速,且抵銷效應隨著 坡度愈陡而愈強,故堤趾處最大正向剪應力隨海堤 坡度變陡而愈小。而當波浪朝離岸方向前進而遠離 斜坡時,有碎波現象時會產生較大之下刷水流,故 堤趾處有較大之負向剪應力,直立堤前則因入反射 波抵銷,故堤趾處底床剪應力爲零。而觀察整體之 底床剪應力分佈,可發現S = 1:2斜坡堤引致的底 床剪應力較小,推測原因爲波浪在S = 1:5斜坡堤 上會發生碎波,而直立堤對波浪有較大的反射效應, 故兩者整體之底床剪應力分佈皆比S = 1:2斜坡堤 來的大。

四、結論與建議

為探討週期波在海堤附近長期作用下黏性流場 的演變與物理特性,本文選用三種台灣沿岸常見之 堤岸坡度,分別為直立堤與S=1:2、S=1:5之 斜坡堤。並配合兩種不同U,數之波浪條件入射至 海堤產生溯升、溯降及碎波等變化。經由數值模擬 的結果,可歸納出以下幾點:

 在自由液面方面,經由週期波溯升及溯降的 過程中得知,入射波與反射波在海堤前方形成駐波 狀態,且其駐波程度會隨著堤面坡度愈緩而愈不明 顯。

 在水下流場與邊界層流場方面,當週期波於 堤面上溯升速度減緩時,邊界層外的流體朝向岸方 向流動,而邊界層內的流體則朝離岸方向前進,此 一現象稱爲回流 (reverse flow)。回流現象爲邊界層 內流場受自由液面高程差影響,而產生逆向壓力梯 度 (adverse pressure gradient) 導致流體產生分離。

 在堤面波壓部分,發生最大正向波壓與負向 波壓時,恰好是溯升最高與溯降最低的時刻。觀察 堤面波壓的正負向,推測應與其對應自由液面高程 變化有關。

4. 在底床剪應力方面,由不同堤面坡度海堤前 之整體底床剪應力分佈,可發現 S = 1:2 斜坡堤 引致的底床剪應力最小,推測原因可能為波浪在 S = 1:5 斜坡堤上會發生碎波,而直立堤對波浪有 較大的反射效應,故兩者整體之底床剪應力分佈皆 比S = 1:2 坡堤來的大。

5. 在週期平均流場方面,可知直立堤前形成駐 波後其週期平均流場每 L/4 會產生方向相反,大 小對稱之穩環流胞 (steady recirculating cell) 結構。 此現象於 S=1:2 之斜坡堤,亦可發現在斜坡堤 面與堤前存在類似穩環流胞的結構,但其結構較不 對稱,大小亦不同。而當波浪入射至較緩之 S=1:5 斜坡堤時,波浪發生碎波現象,使其流場 較為複雜。故其駐波現象較不明顯,並未發現有穩 環流胞之結構,而其流場因碎波作用,沿著堤面有 一離岸質量傳輸之流速,稱之為水下逆流或暗流 (undertow)。

本數值模式經一系列驗證已可適切模擬波浪與 不同坡度海堤交互作用時的波浪場演變。本文為簡 化問題複雜度將底床坡度條件設定為水平底床,但 實際海岸問題中,許多海堤在設計上,常在海堤前 建造透水離岸堤或拋放消波塊,其流場演變將更為 複雜。希望能進一步的修正模式,將可更貼近了解 實際海岸地形的流場演變,期望提供台灣海岸防護 上的設計依據。

謝誌

本 論 文 係 國 科 會 專 題 研 究 計 畫 (編號 NSC98-2221-E-006-252-MY3)之研究成果,承 蒙國科會經費之補助使本研究得以順利完成,謹致 謝忱。

參考文獻

- 陳志欣(2011),應用質量守恆邊界法模擬波浪 於不規則近岸結構物上之溯升與越波,國立成 功大學水利及海洋工程研究所博士論文.
- 蔡清標、李宇曜、陳鴻彬 (1997), 陡坡海床上 波浪變形之實驗研究, 第十九屆海洋工程研討 會論文集,第137-144頁。
- 劉冠亨 (2013),海堤附近波浪引致黏性流場之 數值模擬,國立成功大學水利及海洋工程研究 所碩士論文.
- Carrier, G. and Greenspan, H. (1958). Water waves of finite amplitude on a sloping beach. J. *Fluid Mech*, 4(1), pp. 97-109.
- Carter, T.G., Liu, L. F. P. and Mei, C. C., (1973). Mass transport by waves and offshore sand bed forms. *Journal of Waterway Harbors and Coastal Engineering, ASCE*, Vol.99. No. WW2, pp. 165-184.
- Chen, C. J. and Chen, H. C. (1984). Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations. *Journal of computational physics*, 53(2), pp. 209-226.
- Enright, D., R. Fedkiw, et al. (2002). "A hybrid particle level set method for improved interface capturing." *Journal of computational physics* 183(1): 83-116.
- Gislason, K., Fredsøe, J., Mayer, S. and Sumer, B. M., (2000). The mathematical modeling of the scour in front of the toe of a rubble-mound breakwater. *In: Book of abstracts, 27th international coastal engineering conference. Vol. I. Sydney (Australia): ASCE*, pp. 130.
- Huang C. J., Lin C. Y. and Chen, C. H. (2013). An improved immersed boundary method for simulating fluid-structure interaction. *Int. J.*

Numer. Meth. Fluids, in revision.

- Lin, C. Y. (2007). Simulation of Breaking Waves Using Particle Level Set Method. , 國立成功大學 水利及海洋工程研究所博士論文。
- Nadaoka, K. and Hino, M. et al. (1989). Structure of the turbulent flow field under breaking waves in the surf zone. *Journal of Fluid Mechanics*, 204(1), pp. 359-387.
- Osher, S. and J. A. Sethian (1988). "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations." *Journal of computational physics* 79(1): 12-49.
- Peng, D., B. Merriman, et al. (1999). "A PDE-based fast local level set method." *Journal of computational physics* 155(2): 410-438.
- Saville. (1956). Wave run-up on shore structures. Journal of the Waterways and Harbors Division, ASCE 82(925).
- Shuto, N. (1967). Run-up of long waves on a sloping beach. *Coastal Eng. In Japan*, Vol. 10, pp. 23-38.
- Shuto, N. (1972). Standing waves in front of a sloping dike. *Coastal Eng. In Japan*, Vol. 17, pp. 1-12.
- Shuto, N. (1974) Nonlinear long waves in a channel of variable section. *Coastal Eng. In Japan*, Vol. 17, pp. 1-12.
- Sumer, B. M. and Fredsøe, J. (2000). Experimental study of 2D scour and its protection at a rubble-mound breakwater. *Coastal Engineering*, 40(1), pp. 59-87.
- Tsai, C. P. , Wang, J. S. and Lin, C. (1998). Down-rush flow waves on sloping seawalls., *Ocean Engineering*, Vol. 25, No. 4-5, pp. 295-308.
- Tsuchiya, Y. and Yamaguchi, M. (1970) Horizontal and vertical water particle velocities induced by waves. *Proc. 12th conf. on Coastal Eng.* p.555-567.