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In this study, a two-dimensional continuous wavelet transform is applied to quantify

the non-homogeneity from remote-sensing wave images. Our study shows that the

non-homogeneity index, which is proposed here, is capable of identifying the

degree of non-homogeneity from the wave-field images. However, the influence

from the edges of the wave-field image should be considered in analysis. The

calculated results from the simulated wave fields and from the natural wave-field

images reveal that the non-homogeneity index is influenced by the bathymetry inside

the area of the ocean-wave image. It conforms to the character of the natural wave

non-homogeneity. After discussing the wave characteristics from the wave-field

image with a high non-homogeneity index, an inhomogeneous algorithm is recom-

mended for obtaining accurate and reasonable wave results from the wave image.

1. Introduction

Ocean-wave information is the basis for performance improvements of ocean and coastal

activities. Navigation, harbour construction, fishing and cultivation, coastal disaster

protection, recreation and even defence capabilities have become much more dependent

on the availability of long-term, stable and high-quality oceanographic information.
Ocean-wave observation always plays an important role in evaluating and describing

wave characteristics. Wave energy, wave period, wavenumber and wave direction are the

keys for understanding of the mechanisms of wave formation and propagation. These

(wave energy, wave period, wavenumber and wave direction) are also what we observed

for the purposes of ocean and coastal activities. At present, various in-situ measurements

with single-point sensors have been developed significantly; they are designed to collect

wave information from the time domain. Remote sensing is a useful method to observe

wave features in the space domain. Some studies have revealed the possibility of obser-
ving waves by remote-sensing technologies (Vachon and West 1992, Turiel et al. 2007).

A wave image spectrum is the key to calculating the wave parameters from an ocean

remote-sensing image (Alpers and Hasselmann 1978). Wave features, such as
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wavenumber and wave direction, are obtained from the wave image spectrum (Kuo

et al. 1999). In order to derive the wave image spectrum from the ocean remote-

sensing image, a given range of sub-image was analysed by means of spectrum

algorithms. Nowadays, Fourier transforms have been popularly adopted in ocean

remote-sensing image analysis for obtaining the wave image spectrum (Kanevsky
2005). To apply Fourier transforms in the image analysis, the assumption of spatial

homogeneity within the analysed area is necessary. However, it is a fact that most real

signals in the nature are inhomogeneous or nearly inhomogeneous, as are the wave

signals from remote-sensing images, especially for the wave-field images from coastal

areas or near the shore. Due to the influences of the variant bathymetry and coastal

structures, ocean waves would always be transformed in space (Reeve et al. 2004). It is

almost impossible to assume that the wave-field images near the shore are homo-

geneous because of the change of wave features in the space domain.
In order to analyse the inhomogeneous wave-field images, a short-time Fourier

transform (STFT) can be applied. The solution to inserting space information into the

spatial frequency domain of the signal is to divide the signal into small windows so

that the signal can be assumed to be homogeneous inside the range of the window. For

each such window, the Fourier transform can be applied. In contrast to the Fourier

transform, the window is of finite size in the window Fourier transform, resulting in

imperfect frequency resolution. If it is assumed that the size of the window is infinite,

as it is in the Fourier transform, a perfect spatial frequency resolution is obtained
whilst the space information is lost. The selection of the proper window width is

related to what is known as the Heisenberg Uncertainty Principle (Van Name 1960). It

is not known what spectral components exist in what instances of space. Narrow

windows provide good space resolution, but poor spatial frequency resolution. Wide

windows provide good spatial frequency resolution, but poor space resolution.

Furthermore, wide windows may violate the very condition of the signal as stationary

or homogeneous. Hence, to obtain complete and reliable wave information from the

inhomogeneous wave image, it is necessary to determine the homogeneous window
from the whole inhomogeneous image.

The method to quantify the inhomogeneity from the wave image is essential to

determine the areas or windows from the entire inhomogeneous image. Some studies

have focused on the issue of quantifying the homogeneity from the signals in nature.

Mountain and Birnbaum (1982) proposed a method to determine the non-homogeneity

size and shape from the scattering of low-frequency sound waves in a solid. Some

parameters, which cannot be calculated from the remote-sensing images, are neces-

sary to input into the algorithm. It is difficult to apply it to remote-sensing image
analysis. Liu (2000) applied the one-dimensional continuous wavelet transform

(CWT) to determine the degree of non-stationarity from different kinds of time series

of signals. The CWT is now recognized as a useful, flexible and efficient technique to

analyse intermittent, non-stationary and inhomogeneous signals, as well as images

that are obtained from experimental or in-situ measurements. It has been applied to

solve a variety of engineering problems and almost every corner of physics. However,

the implementations of the wavelet transform in one dimension (signal analysis) and

in two dimensions (image processing) are quite different. It is the purpose of this
article to develop a procedure for quantifying the non-homogeneity from the ocean

remote-sensing images by implementing the two-dimensional (2-D) CWT, so as to

determine the degree of the non-homogeneity. The simulated and natural wave

images are both used to verify the practicability of the algorithm.
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2. Theoretical preliminaries

‘Homogeneity’ implies that the statistical properties do not change with space. For the

mathematical definition of homogeneity or stationarity, Xtf g is said to be completely

stationary if the joint probability distribution of Xt1;Xt2; :::;Xtnf g is identical to that

of Xt1þk;Xt2þk; :::;Xtnþkf g (Priestley 1991). In this paper, we have used the 2-D CWT

to calculate the non-homogeneity degree from the ocean-wave remote-sensing images.

The algorithm is discussed in the following.

2.1 Two-dimensional continuous wavelet transform (2-D CWT)

As far as the principle of 2-D CWT is concerned, it assumes that various wavelets,

which are scaled, rotated and shifted versions of a pre-chosen mother wavelet func-

tion, can be accumulated as any 2-D image signal (figure 1).

Given a two-dimensional spatial image sðxÞ ¼ sðx; yÞ of finite energy, we can

represent the analysed image by

sk k2¼
ð

R2

s xð Þj j2d2x <1: (1)

in which R2 means two-dimensional space domain. In practice, the discrete values

of sðxÞ correspond to the level of grey of each pixel. The 2-D CWT W(b,�,a) of the
image function s(x) with respect to a transformed mother wavelet cb,�,a is shown in

(Antoine et al. 2004)

Wðb; �; aÞ ¼ 1ffiffiffiffiffiffi
Cc

p cb;�;a sðxÞj
� �

; (2)

in which the constant Cc is associated with the admissibility condition and depends on

the wavelet family (Antoine et al. 2004), and the function cb,�,a is the wavelet function,

Figure 1. A schematic illustration of a wave image broken into various wavelets.
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which is derived from the mother wavelet function c via dilations (a), translations (b)

and rotations (r_�):

cb;�;a ¼ a�1c a�1r�� x� bð Þ
� �

: (3)

In equation (3), the factor a is a normalization that gives all dilated versions of the

mother wavelet the same energy, i.e. it is the ratio of the size of the dilated wavelet to

the size of the mother wavelet. The translation parameter b corresponds to the

position of the wavelet as it shifts through the space domain. The rotation matrix

r–� with a rotation angle � rotates the wavelet in spatial coordinates:

r�� ¼
cos � sin �
� sin � cos �

� �
; 0 � �< 2p : (4)

The relationship between the mother wavelet function c and the wavelet function

cb,�,a is shown in figure 2.

In equation (2), W(b,�,a) conserves the norm of the signal, thus its total energy isð ð ð
Wðb; �; aÞj j2da

a3
d2b ¼

ð
R2

s xð Þj j2d2x: (5)

To better understand, equation (2) can be expressed as:

Wðb; �; aÞ ¼ C
�1=2
c a�1

ð
R2

c� a�1r�� x� bð Þ
� �

s xð Þd2x; (6)

where c* is the complex conjugate of the mother wavelet function c. To implement

equation (6), it is necessary to choose a mother wavelet function c first. The Morlet
wavelet function, which is a directionally selective and complex-valued wavelet func-

tion, is chosen here for detecting the directional wave information from the wave

image. The two-dimensional Morlet mother wavelet function, defined in equation (7),

and its function in Fourier space, defined in equation (8), was used throughout the

implementation procedures in this study:

Figure 2. The relationship between mother wavelet function (a) and wavelet function (b).
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cðxÞ ¼ e�0:5 Axj j2 e ik0�xð Þ � e�0:5 Axj j2 e �0:5 A�1k0j j2
� �

(7)

and

ĉðkÞ ¼
ffiffi
e
p

e�0:5 A�1 k�k0ð Þj j2 � e �0:5 A�1k0j j2
� �

e�0:5 A�1kj j2
� �

; (8)

where ĉ is the mother wavelet function of c in Fourier space, which means that the

function is in the frequency (spatial frequency) domain. The spatial frequency, k, is

the defined wavenumber in the field of oceanography. The parameter k0 ¼ k0x; k0y

� �
is a vector constant, which is predominant over the oscillations of the wavelet function

in the x- and y-directions. Since the oscillations of the wavelet function can be

controlled by r-�, k0y ¼ 0 is used in our study. As shown in figure 3, the peak location

of the mother wavelet function in the spatial frequency domain is related to k0x. If the

value of k0x is too low, the peak location of the mother wavelet function would be too
close to the edge (k0x ¼ 0) in the spatial frequency domain. The wavelet function

would be incomplete in this case (as shown in figure 3(a)). According to our previous

study (Chuang et al. 2008), the value of k0x in this study is set up as 6. The matrix

A ¼ diag½e�0:5; 1�, in which e ¼ 1 is used here.

2.2 Basic properties of the 2-D CWT implementation

A faster algorithm for the 2-D CWT is to calculate in Fourier (spectral) space using
the numerical technique of the inverse fast Fourier transform (IFFT), so equation (6)

could be calculated using the expression

Wðb; �; aÞ ¼ C
�1=2
c a

Z
R2

ĉ� ar�� kð Þð Þeibkŝ kð Þd2k; (9)

in which ŝ kð Þ is the Fourier transform of s(x). ĉb;�;a kð Þ is the function cb,�,a (x) in the

Fourier space and it is defined as (Antoine et al. 1996)

ĉb;�;a kð Þ ¼ ae�i2bkĉ ar�� kð Þð Þ: (10)

Equation (10) shows that the spatial frequency could be transformed from k into

ar�� kð Þ after scaling, shifting and rotating a wavelet function. As discussed above, k0 is

the peak location of the mother wavelet function in the spatial frequency. After

transforming, we assume a new location of the peak energy of the Morlet wavelet

function in the Fourier space becomes kn. The relationship between k0 and kn is given as

Figure 3. Influence of the parameter k0x upon the wavelet function in the spatial frequency
domain.
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kn ¼
k0

ar��
: (11)

As shown in equation (11), the spatial frequency kn can be obtained by calculating the

relationship between k0, a and r-�. The spatial frequency kn stands for the wavenum-

ber, which is an important parameter describing the characteristics of ocean waves.

The shifting parameter b of the 2-D CWT stands for the shifting distance of the

wavelet function from the original location of the wave-field image. In other words, it

presents the analysed location (x) of the wavelet function from the image. Hence, the

function W(b,�,a) could be expressed as W x; knð Þ which represents the local image
spectrum W knð Þ from different spatial locations x.

2.3 Definition of the non-homogeneity index (IN)

The idea of the non-stationarity index from Liu (2000) is applied and modified for

calculating the non-homogeneity index from the wave image in our study.

As shown in the previous section, we can obtain the image spectra from different

locations of the wave image W x; knð Þ. For the digital form, W x; knð Þ could be
presented as

W x; knð Þ ¼Wðxj; yk; kxp; kyqÞ: (12)

The averaged image spectrum fðkxn; kynÞ from the whole space domain can be

obtained from the local spectra from the whole space:

fðkxn; kynÞ ¼
1

NxNy

XNx

j¼1

XNy

k¼1

Wðxj; yk; kxp; kyqÞ; (13)

in which Nx and Ny are the total data samples in the x- and y-directions of the space

domain. The idea of the non-homogeneity index (IN) is similar to the principle of

standard deviation in statistics. The deviation between the local image spectrum

Wðxj; yk; kxp; kyqÞ and the averaged spectrum fðkxn; kynÞ is calculated to obtain the

non-homogeneity index, which can be defined as

IN ¼
XNx

j¼1

XNy

k¼1

XNkx

p¼1

XNky

q¼1

Wðxj ; yk; kxn; kynÞ � jðkxp; kyqÞ
jðkxp; kyqÞ

� �2

; (14)

in which Nkx and Nky are the total data samples in the spatial frequency domain. For a

high non-homogeneous case of a wave image, the local image spectra

Wðxj; yk; kxp; kyqÞ should be quite different to different locations ðxj; ykÞ of a wave

image. Under this situation, the value of the non-homogeneity index should be higher

when calculated using equation (14). In other words, the wave image should be more

non-homogeneous if the value of the non-homogeneity index is higher.

3. Wave-field image simulation and analysis

To examine the validity of the technique presented above and to test the algorithm, the

following numerical simulations of ocean-wave images were performed and discussed.

The numerical simulations were carried out for random waves in which the spec-

trum of ocean waves was assumed in advance. The irregular wave-field image can be
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represented by equation (15). This expression is suitable for a sloped bathymetry

(Horikawa 1988):

�ðx; yÞ ¼ amn

XM=2

m¼�M=2

XN

n¼1

sin

ðx

0

km cos �ndxþ km sin �nyþ emn

	 

: (15)

Here, km is the wavenumber of the mth wave component and emn is a random phase.

The amplitude amn can be derived from the assumed directional wave spectrum

W o; �ð Þ, where om is the wave frequency and �n is the wave direction. According to

the conservation of energy, the summations of the wave components with different

frequencies and directions should be equal to the square of the wave amplitude

(equation (16)). The complete algorithm for simulating the ocean-wave spectrum

has been proposed by Goda (1999). The input wavenumber is calculated from the

dispersion relationship in equation (20), where h is the water depth. The theoretical
images spectrum W kx; ky

� �
, which will be applied to test the algorithm later, can be

transformed from the theoretical wave spectrum W o; �ð Þ using equation (17) (Tucker

and Pitt 2001):

amn ¼
XM=2

m¼�M=2

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W om; �nð Þ�o��

p
(16)

and

W kx; ky

� �
¼W o; �ð Þ 1

k

�o
�k

: (17)

Figure 4 presents an example of a simulated wave image with a significant wave height

of 2.5 m, a mean wave period of 8 s and a dominant wave direction of 45 �. The waves

move from the northwest. Due to the influence of the variable bathymetry upon the wave

propagation, wave direction and wavenumber change with space (Chuang et al. 2008).
As discussed above, the wave image should be more non-homogeneous if the value

of the non-homogeneity index is higher. As shown in equations (13) and (14), the local

image spectrum W x; knð Þ is the key to calculating the non-homogeneity index. The

local image spectrum was calculated using the 2-D CWT. It is necessary to check the

accuracy of the image spectrum so as to ensure the correctness of the non-

homogeneity index. By applying the 2-D CWT on the simulated wave image, the

image spectra at six locations, marked in figure 4, were derived and projected onto the

spatial frequency domain (wavenumber plane) to present energy contours, as shown
in figure 5.

Figure 5 shows the wavenumber corresponding to energy contour at location

1 (deeper water) and gradually moves from a lower value to a higher one at location

6 (shallow water). The dominant wave directions also change with water depth. Each

contour corresponds to one wave component and its mirror image in the opposite

direction. It means that the wave directions are ambiguous in judging the 180�

difference when a single wave image is transformed for the image spectrum. The

ambiguity could be eliminated by adopting a series of wave images (Young et al.

1985). The theoretical wavenumber and wave direction conditions, which are input

into the algorithm of the wave-field simulation, are also marked by the plus signs on

the image spectra of figure 5. The location of the contour peak should be close to the

plus sign if the local image spectrum by the 2-D CWT is accurate enough. As shown in
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figure 5, the plus sign almost overlaps the contour peak on the local wave image
spectrum from location 2 to location 5. The calculated results of the wave parameters

(figure 6) from different locations by the 2-D CWT also show that the accuracies were

poor at location 1 and location 6. It could be due to the influence of the edges of the

wave-field image upon wave analysis, which can be explained using figure 7. As shown

in equation (2), the 2-D CWT is the inner product of the wavelet function and the

image function. However, the wavelet function is not complete at the locations of

interest near the edges of the image because its energy distribution is cut off there.

After applying this incomplete wavelet function to the wave image analysis, the
spectral energy is biased. The errors were more conspicuous at location 1 and location

6 of the wave image than in other locations.

Different kinds of wave images were simulated and analysed for understanding the

influence of the image edges upon calculating the wave. Figure 8 shows that the

calculated errors would decrease if the analysed locations were distant from the

image edges. The distance between the image edge and analysed location is related

to the dominant wavelength of the wave field. The normalized root mean square error

of the wave calculations would be lower than 5% if the distance between the image
edges and calculated locations were larger than half the wavelength of the wave field.
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Figure 4. Simulated random wave-field image on a slowing varying topography.
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4. Discussion

We have shown the accuracy of the local image spectra from a non-homogeneous

wave-field image using the 2-D CWT above. In this section, we discuss the non-

homogeneity indexes under different conditions. Figure 9 shows the non-

homogeneity indexes of the wave cases with different gradients (sea bed slopes ¼
0–0.015) in the bathymetry. The value of the non-homogeneity index increases with

space except for the case of a horizontal sea bed (S ¼ 0). It is revealed that the non-
homogeneity index is related to the gradient in the bathymetry. For the wave-field

case on a steeper seabed, waves transform their characters rapidly (Dean and

Dalrymple 1991). Wave field would be more inhomogeneous in this case. It is the

reason that the value of the non-homogeneity index is higher under the situation of

steeper sea bed.

Different non-homogeneity indexes are calculated from these simulated image

cases using the 2-D CWT algorithm. For the traditional image-analysing methods,

e.g. the Fourier transform, the averaged spectrum S kx; ky

� �
is obtained from the

whole wave-field image. Wave parameters, such as wavenumber k and wave direction �
can be calculated from the wave image spectrum:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
(18)

and

� ¼ tan�1 kx

�
�ky

� �
: (19)

Figure 5. Wavenumber contours estimated by the wavelet transform at six locations of the
wave-field image (figure 4).
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The wave features in the spatial frequency domain can be described by one aver-

aged spectrum from the whole wave-field image. However, the wave features are

variant with space for the cases of inhomogeneous wave-field images. The deviations

between the averaged results from the Fourier transform and the theoretical wave

values from different locations of the entire non-homogeneous wave-field image were
calculated. These show that the higher the non-homogeneity index, the higher the

deviations between the averaged results using the Fourier transform and the theore-

tical wave parameters from the entire non-homogeneous wave-field image

(figures 10 and 11). According to the Heisenberg Uncertainty Principle (Van Name

Figure 6. Wave parameters for analysing the results obtained from different locations (figure 4).

Figure 7. A schematic illustration of a wavelet function performed on the marginal area of an
image function.
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1960), the resolution of the image spectrum should be high enough using the Fourier

algorithm. For the cases of low non-homogeneity index from the wave images, the

wave characteristics would not change obviously with space. The Fourier transform

would be suitable for analysing the wave images, in order to obtain better resolutions

Figure 9. Non-homogeneity indexes with different gradients in the bathymetry.

Figure 8. The normalized root mean square error of the wave calculations from different
distances between the image edge and the calculated locations.
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Figure 11. Deviations of the wave direction between the results from the Fourier transform
and between the theoretical values from the wave image.

Figure 10. Relative deviations of the wavenumber between the results from the Fourier
transform and from the theoretical values.
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in the spatial frequency domain. However, the inhomogeneous algorithm, i.e. the

CWT, should be more appropriate for cases of high non-homogeneity indexes.

5. Natural wave-field images analysis

As discussed above, the non-homogeneity was tested using the simulated wave image.

In order to verify the practicality of the algorithm on natural signals, X-band radar

images observed from the sea surface were applied here. The X-band radar is one of

the prevalent systems for observing ocean waves, and it has been shown that it is

possible to obtain reliable data of wave characteristics after comparing with corre-
sponding buoy data (Nieto Borge and Soares 2000). The X-band radar is suitable for

monitoring the waves in near-offshore or shallow zones. For applications of coastal

engineering, coastal-area protection and management and oceanic recreation, the

interesting area is always within several kilometres of the land and has a high

measurement resolution requirement. The X-band radar should be an ideal tool to

cope with this situation. Radar images are generated by the interaction of electro-

magnetic waves with sea-surface ripples at grazing incidence. Radar backscatter is

presented as a grey value. Although the backscatter energy from radar images is not
indicative of the elevation of sea-surface level, it has been, until now, the popular way

to obtain near-wave information in space domains from field measurement (Nieto

Borge et al. 1999, Barale and Gade 2008).

In this study, the radar images were observed in the southern Taiwan Kenting Sea

area (figure 12). The water depth in the analysed area ranges from 10 to 100 m. About

200 radar image cases are applied here. Three different areas, as shown in figure 12,

are selected for analysing the non-homogeneity indexes. Figure 13 shows that the

calculated results of the non-homogeneity indexes from deep-water areas are smaller
than those from the shallower water areas. According to linear ocean-wave theories,

wavenumber and wave direction are influenced by the water depth (h):

o2 ¼ gk tanh khð Þ (20)

and

k sin � ¼ const:; (21)

in which o is the wave frequency, which is constant during the wave propagation

based on known linear wave theories. k and � are described above and g is the

acceleration due to gravity. For the deep-water area, the term tanh(kh) in equation

(20) approximates to 1. In other words, wavenumber and wave direction would be

nearly constant during wave propagation in deep-water situations. This is the reason
why the non-homogeneity indexes in area A of the radar wave field are smaller than

that in other areas. It does conform to the ocean-wave theories.

6. Conclusions

Ocean-wave observation plays an important role in the fields of ocean engineering

and marine science. Remote sensing is a useful way to present ocean-wave features in

the space domain. Fourier transforms were applied frequently to calculate the wave

image spectra from ocean remote-sensing images under the assumption that wave

features within the image are homogenous. However, ocean-wave information from

remote-sensing images is always inhomogeneous. In order to obtain complete and

Non-homogeneity from ocean remote-sensing images 1315
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Figure 12. The natural wave-field image and its corresponding bathymetry.

Figure 13. The non-homogeneity indexes from the different areas in figure 12.
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reliable wave information, it is necessary to determine the degree of non-homogeneity

degree of the analysed image. This study was aimed at developing an algorithm for

quantifying the non-homogeneity from the ocean-wave remote-sensing images, so as

to determine the homogeneous areas from the wave image.

The algorithm for quantifying the non-homogeneity from the image was based on
the 2-D CWT. To examine the validity of the algorithm, the numerical simulated wave

images were performed and discussed. The 2-D CWT is capable of extracting the local

image spectrum, which is the key to quantifying non-homogeneity, at any chosen

location from the wave-field image. However, the accuracy of the local image spec-

trum is influenced by the edges of the image. The distance between the image edges

and the chosen locations should be larger than half the wavelength of the waves in

calculating the highly accurate image spectrum.

According to the calculated results of the non-homogeneity indexes from different
kinds of simulated images, it was revealed that the gradient in the bathymetry is the

key that influences the values of non-homogeneity index from the wave images. In

addition to the simulated wave-field images, X-band radar images observed from the

ocean surface were also applied for exploring non-homogeneity wave fields in nature.

The observed wave fields from different cases of the bathymetry were discussed. The

results reveal that the non-homogeneity indexes are higher in the cases of shallow

water areas; this conforms to ocean-wave theories.

In this study, we have proved that the non-homogeneity index is capable of
presenting the degree of wave non-homogeneity. Based on our results, it is suggested

that the inhomogeneous algorithm would be more appropriate for the case of high

non-homogeneity indexes.
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