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Ocean remote sensing is a useful way to obtain ocean wave information. Due to
possible inhomogeneities from remotely sensed images, the current work proposes
issues concerning ocean wave image analysis using the two-dimensional continuous
wavelet transforms (2-D CWTs) to calculate local wave image spectra from inho-
mogeneous images. To optimize the algorithm of the 2-D CWT for wave image
analysis, this work explores ideal parameter values for the wavelet function. The
current study also analyses the limits of spatial image resolution and wave image
size. After implementing the 2-D CWT on satellite and X-band radar images, this
study presents local image spectra and ocean wave information from all the ocean
images. These local image spectra reveal the phenomenon of wave refraction and
wave nonlinearity nearshore. Compared to real wave spectra, the wavelet spectra
present accurate results to describe local wave features in the spatial frequency
domain.

1. Introduction

The ocean possesses ever-increasing global significance to human life, which makes
increasing oceanic activities unavoidable. Ocean waves are one of the most signifi-
cant phenomena in ocean environments and have attracted attention and comment
throughout recorded history. Wave information is the basis for performance improve-
ments of ocean and coastal activities. Engineering, navigation, harbour construction,
fishing and cultivation, coastal disaster protection, recreation and even defence capa-
bilities have become much more dependent on the availability of long-term, stable and
high-quality ocean wave information. Ocean monitoring plays an important role in
describing wave characteristics and can be broadly classified into two categories: in situ
measurement and remote sensing. Various in situ measurements have been developed
and improved for better quality. Most in situ measurement techniques are designed
for monitoring ocean wave information in the time domain, and it is not as easy to
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8780 L.-C. Wu et al.

collect wave information in the space domain from the present in situ measurement
instruments. An ocean wave field obtained by remote-sensing techniques is a useful
way to present wave features in space domain. By the mid 1960s, researchers identified
the basic processes responsible for the evolution of the ocean wave spectrum (Young
1999), and spectrum analysis has also become one of the main issues in studying ocean
waves using remote-sensing technologies (Alpers and Hasselmann 1978, Young et al.
1985). A spectrum is the key to obtaining wave information such as wave number, wave
direction and wave energy. Analysis algorithms are necessary to extract the spectrum
from the image. The algorithm of a two-dimensional Fourier transform (2-D FT) has
often been applied in the past to calculate the image spectrum (Gangeskar 2002, Nieto
Borge et al. 2004), and is one of the most commonly used methods for identifying
periodic components in stationary data.

To analyse the image using 2-D FT theory, spatial homogeneity within the observed
area is assumed. The definition of spatial homogeneity is similar to temporal station-
arity. Priestley (1991) statistically defined it as: A series Xt is called ‘stationary’ if,
loosely speaking, its statistical properties do not change with time. More precisely,
Xt is completely stationary if, for any set of times t1, t2, . . . ., tn and any inte-
ger z, the joint probability distribution of {Xt1 , Xt2 , . . . , Xtn } is identical to the joint
probability distribution of {Xt1+z, Xt2+z, . . . , Xtn+z} (Kinsman 1965, Priestley 1991).
Similarly, ‘homogeneity’ implies that the statistical properties do not change with
space. It is recognized that most geophysical quantities are typically non-stationary
and inhomogeneous in the time and space domains. While the evidence from geo-
physical quantities for abrupt changes is quite clear, the mechanisms driving these
changes is less clear, and they are still the subject of active research (Cracknell and
Varotsos 2007). These non-stationarities and inhomogeneities often conceal exist-
ing correlations into examined spatio-temporal series. Therefore, instead of applying
conventional analyses, researches should use new analytical techniques capable of
eliminating non-stationarities in the data (Varotsos et al. 2007).

The signals from ocean waves also show non-stationarities and inhomogeneities.
Tayfun (1984) indicated that as ocean waves propagate from a homogeneous region,
such as deep water, into a region with uneven underwater topography, their charac-
teristics vary spatially. In a shallow bay or estuary, ocean waves may become shallow
water waves during their development process. Waves propagating in a shallow water
region gradually change in wavelength and direction due to the phenomenon of wave
refraction. To analyse the inhomogeneous wave field image, Chen and Chen (1994)
applied window Fourier transform (WFT) theory. The solution is to divide the image
into small windows so that the wave field image is assumed to be homogeneous inside
the window range in which the FT can be applied. However, the proper window size
is often unknown. A wide window collects enough wave information from the wave
field image, but wave features may still be inhomogeneous within the window. A nar-
row window prevents wave inhomogeneity, but wave information from the small image
may not be enough to calculate the spectrum.

Wavelet transforms (WTs) and detrended fluctuation analysis (DFA) are currently
among the most frequently used tools for non-stationary and inhomogeneous data
analysis. Some recent studies have applied WT and DFA to the non-stationary time
series of different geophysical quantities (Gorman and Hicks 2005, Varotsos and
Kirk-Davidoff 2006, Varotsos et al. 2006, 2007, Lee et al. 2007). In addition to
one-dimensional time series analysis, the high-dimensional WT algorithm for image
analysis is also complete (Carlson 1995). Image spectrum analysis from wave images
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Ocean remotely sensed image analysis 8781

by the 2-D CWT should also be practicable, but this issue has received little attention.
To extract accurate spectra from an inhomogeneous wave field image, the 2-D CWT
algorithm should be applicable. The present article extracts the spectra by 2-D CWT
from the ocean remotely sensed image to reveal inhomogeneous ocean wave phe-
nomena. This work explores appropriate parameter values from the wavelet function
and image format to optimize the 2-D CWT algorithm on image analysis. This study
applies satellite images and X-band radar to discuss the ocean wave phenomena.

2. Theoretical preliminaries

2.1 The 2-D CWT algorithm

The CWT is often compared to the FT, in which signals are represented as a sum of
sine waves or cosine waves. The CWT breaks the signal into different kinds of wavelets,
which then can be scaled, shifted and rotated (figure 1). In the study of Antoine
et al. (2004), a complete theory of 2-D CWT was proposed and the application of
image analysis was discussed. The 2-D CWT of the image function s(x) = s(x, y) for
a transformed wavelet function ψb,θ ,a(x) is given by:

W (b, θ , a) = C−0.5
ψ a−1

�
R2
ψ∗ [a−1r−θ (x − b)

]
s(x) d2x, (1)

ψ b1,θ1,a1
(x)

ψ b1,θ1,a2
(x)

ψ b1,θ2,a1
(x)

ψ b1,θ2,a2
(x)

ψ b1,θ3,a1
(x)

ψ b2,θ1,a1
(x)

ψ bn,θn,an
(x)

s(x)

y x

(a)

+

+

+

+

+

II

...

ψ b1,θ1,a1
(k)

ψ b1,θ1,a2
(k)

ψ b1,θ2,a1
(k)

ψ b1,θ2,a2
(k)

ψ b1,θ3,a1
(k)

ψ b2,θ1,a1
(k)

ψ bn,θn,an
(k)ˆ

s(k)ˆ

ky kx

+

+

+

+

...

(b)

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

Figure 1. Schematic illustration of a wave image broken into various wavelets in (a) the space
domain and (b) spatial frequency domain.
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8782 L.-C. Wu et al.

Cψ = (2π)2
�

R2

[∣∣∣ψ̂ (k)∣∣∣2/|k|2
]

d2k < ∞, (2)

in which ψ∗ is the complex conjugate of the wavelet function ψ and function ψ̂ is the
mother wavelet function ψ in Fourier space. R2 is a complex-valued function defined
on the real plane as square integrable. k = (kx, ky

)
is the spatial frequency and is called

the wavenumber in the field of coastal engineering and marine science. The scaling
parameter a, a non-dimensional scale factor, is related to the dilated spatial frequency.
The factor a−1 is a normalization that gives all dilated versions of the mother wavelet
the same energy, that is it is the ratio of the size of the dilated wavelet to the size of the
mother wavelet. The translation parameter b = (bx, by

)
corresponds to the position

of the wavelet as it shifts through the space domain. The rotation matrix r−θ with a
rotation angle θ , which rotates the wavelet in spatial coordinates, is usually defined as:

r−θ =
(

cos θ sin θ
− sin θ cos θ

)
, 0 ≤ θ < 2π . (3)

To implement equation (1), it is necessary to first choose a proper mother wavelet
function ψ . The Morlet wavelet function, which is a directionally selective and
complex-valued wavelet function, is chosen here for detecting the directional wave
information from the wave image. The Morlet wavelet function is the result of
sine/cosine functions multiplying a decayed function in which exponential functions
are used. In other words, the Morlet wavelet function can be seen as a kind of decayed
sine/cosine function in the space domain:

ψ (x) = exp
(−0.5 |Ax|2) exp (ik0x)− exp

(−0.5 |Ax|2) exp
(
−0.5

∣∣A−1k0
∣∣2) . (4)

The vector k0 controls the oscillation of wavelet function. A = diag[ε−0.5, 1], ε ≥ 1,
is an anisotropy matrix. The parameter ε controls the wavelet function window in the
space and spatial frequency domains. We will discuss the effects of k0 and ε upon wave
image analysis in later sections. For the theory of a spectrum, sine/cosine functions
are always the components used in analysis. To obtain accurate local spectrum, the
Morlet wavelet function should be applicable for image analysis. For computational
application, the continuous function of the 2-D CWT shown in equation (1) should
be described discretely:

W
(
bxk , byl , θm, an

)
= C−0.5

ψ a−1
n

Nx∑
p=1

Ny∑
q=1

ψ∗ [a−1
n r−θm

(
xp − bxk , yq − byl

)]
s
(
xp, yq

)
�xp�yq, (5)

in which Nx and Ny are the total sampling numbers in the x and y directions of the
wave field. Let Nbx , Nby , Nθ and Na be the operation counts of the parameters bxk ,
byl , θm and an in the calculation. bxk , byl , θm and an denote discrete variables of bx,
by, θ and a. The subscripts k, l, m and n denote the discrete symbols. To calculate
W (bxk , byl , θm, an) from every location

(
xp, yq

)
of the wave field image, Nx = Nbx and

Ny = Nby should be satisfied. Therefore, the total operation counts by equation (5)
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Ocean remotely sensed image analysis 8783

should be N2
xN2

y NaNθ in the image analysis. It is possible to reduce the operation
counts by the WT in the Fourier space:

W
(
bxk , byl , θm, an

)
= C−0.5

ψ an

Nkx∑
p=1

Nky∑
q=1

ei(bxk kxp +byl kyq)ψ̂∗ [anr−θm
(
kxp , kyq

)]
ŝ
(
kxp , kyq

)
�kxp�kyq , (6)

ψ̂(k) = ε0.5
⌊

exp
(
−0.5

∣∣A−1 (k − k0)
∣∣2)− exp

(
−0.5

∣∣A−1k0
∣∣2) exp

(
−0.5

∣∣A−1k
∣∣2)⌋ .

(7)

Function ψ̂ is the mother wavelet function ψ in Fourier space. ψ̂∗ is the complex
conjugate of the function ψ̂ . Nkx and Nky are the operation counts of kxp and kyq .
Based on the theory of discrete image signal analysis, Nkx and Nky should equal Nx and
Ny. Equation (5) can be simplified using the Inverse Fast Fourier transform (IFFT)
algorithm:

W
(
bxk , byl , θm, an

) = C−0.5
ψ anT

{
ψ̂∗ [anr−θm

(
kxp , kyq

)]
ŝ
(
kxp , kyq

)}
, (8)

in which T{} denotes the algorithm of the IFFT. Using the numerical technique
of IFFT, the total operation counts obtained using equation (8) should be reduced
to Nx log2 (Nx)× Ny log2

(
Ny
)× Na × Nθ . Compared with equation (5), equation (8)

does reduce the total operation counts. Equation (8) shows that the result analysed
by 2-D CWT is a function of scaling, translation and rotation parameters. To obtain
the ocean wave information from equation (8), the current work transforms the func-
tion W

(
bxk , byl , θm, an

)
into the image spectrum. As shown in equation (8), ψ̂b,θ ,a(k) is

the wavelet function. The relationship between the wavelet function ψ̂b,θ ,a(k) and the
mother wavelet function ψ̂(k) is defined as:

ψ̂b,θ ,a (k) = a exp (−ibk) ψ̂ [ar−θ (k)] . (9)

The influence of scaling, translation and rotation parameters upon the wavelet func-
tion in the spatial frequency domain is shown in figure 2. Equation (9) shows that the
spatial frequency (wavenumber) could be transformed from k into ar−θ (k) after scal-
ing, shifting and rotating a mother wavelet function. As shown in equation (7), k0 is
the peak location of the mother Morlet function in Fourier space. After transform-
ing, a new location of the peak energy of the Morlet wavelet function in Fourier space
becomes kn. The relationship between k0 and kn is given as:

kn = k0
/
(ar−θ ). (10)

Equation (10) reveals that we can obtain the spatial frequency kn from param-
eters a and θ . The shifting parameter b of the 2-D CWT stands for the shifting
distance of the wavelet function from the original location of the wave image. In other
words, it presents the calculated location x of the wavelet function from the image
directly. Hence, the function W

(
bxk , byl , θm, an

)
could be expressed as W(x, kn), which

represents the local spectrum W (kn) from different spatial locations x.
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Figure 2. Relationship between (a) mother wavelet function and (b) wavelet function in the
spatial frequency domain.

2.2 Simplification of the wavelet function in Fourier space

Figure 3 shows that the Morlet wavelet functions are decay functions in the space
domain and in the spatial frequency domain (Fourier space). In other words, ψ(x)
and ψ̂(k) tend to zero if the values of x and k increase. This means ψ(x) and ψ̂(k)
are approximately zero if the values of x and k are large enough. The zero parts of
the wavelet function cannot affect the convolution in equation (1). Only the non-zero
parts of the wavelet function need to be calculated in the wavelet analysis, so the cal-
culated amounts can be reduced by omitting the calculations from the zero parts of

1.5

(a)

1.0

0.5

–0.5ψ 
(x

, y
)

–1.5

–10 –10

0

10

y

x

10
0

–1.0

0.0

(b)

ψ 
(k

x,
 k

y)

–10

0

10

–10kx

ky
10

0

1.5

1.0

ˆ

0.5

–0.5

–1.5

–1.0

0.0

Figure 3. Morlet wavelet function in (a) the space domain and (b) its spatial frequency domain.
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Ocean remotely sensed image analysis 8785

the wavelet function. The calculations can be quickened by simplifying the wavelet
function. Equation (7) shows that the function ψ̂(k) = ψ̂

(
kx, ky

)
should be symmet-

rical in the x and y directions if the matrix A = diag[1, 1]. In other words, the decay
of ψ̂

(
kx, ky

)
in the x and y directions should be the same. To explain the process more

simply, the function ψ̂
(
kx, ky

)
is simplified as ψ̂(kx) here. The function ψ̂(kx) is zero

if kx is large enough. To determine the non-zero range of the mother wavelet function
in the spatial frequency domain, the standard deviation (σkx ) of the mother wavelet
function is used here:

σkx =
[� ∞

−∞
(
kx − kcx

)2 ∣∣∣ψ̂(kx)

∣∣∣2 dkx

]0.5

, (11)

kcx =
[� ∞

−∞ kx

∣∣∣ψ̂(kx)

∣∣∣2 dkx

]/[� ∞
−∞

∣∣∣ψ̂(kx)

∣∣∣2 dkx

]
, (12)

in which kcx represents the centre of the mother wavelet function in the spatial fre-
quency domain. Figure 4 shows the decay of the Morlet mother wavelet function.
Based on equation (7), ψ̂

(
kcx

)
should approximate to the maximum value of the

mother wavelet function ψ̂m in the whole Fourier space. Let 2Ds be the width of non-
zero parts of the mother wavelet function. As figure 4 shows, ψ̂(kx) is less than 1% of
ψ̂m if Ds is larger than 3.5σkx . This means ψ̂(kx) is small enough and the convolution
between the function ψ̂∗(kx) and the image function ŝ(kx) cannot influence the result
of the WT obviously if Ds is larger than 3.5σkx . For the purpose of simplifying the
mother wavelet function, the current study suggests that the width of non-zero parts
of ψ̂(kx) be set up as the value over 7σkx .
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0
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(k

x)
/ψ
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k c
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(%

)
ˆ

ˆ

Figure 4. Decay of the Morlet mother wavelet function in the spatial frequency domain
(Ds). Ds = Nσkx

.
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8786 L.-C. Wu et al.

3. Optimization of the 2-D CWT algorithm for wave image analysis

To implement the algorithm for oceanic image analysis, some parameters of wavelet
function and image conditions need to be determined. Here, we propose the proper
values of these parameters to optimize this algorithm for image analysis.

3.1 Influence of parameter k0 upon the wavelet function

Equation (4) showed the vector k0 = (k0x , k0y

)
, which was not determined in the pre-

vious sections. if k0x and k0y are both non-zero, the direction of the wavelet function in
space and spatial frequency domains (Fourier space) would be influenced by the val-
ues of k0x and k0y . Since the matrix r−θ from equation (1) was applied to control the
direction of wavelet function, k0y was set to zero in this study. Figure 5 shows that k0x

controls the peak spatial frequency in the spatial frequency domain. The peak loca-
tion of the mother wavelet function in the spatial frequency domain equals k0x . The
peak location of the mother wavelet function would be too close to the edge (kx = 0)
in the kx domain if the value of k0x is too low. The wavelet function would be incom-
plete in these cases and influence the convolution result in equation (1). Therefore, it
is necessary to determine whether k0x is large enough.

As shown in equation (13), let Et be the total energy of the complete Morlet mother
wavelet function, Er

(
k0x

)
is the total energy of the Morlet mother wavelet function

with different k0x . Let Rn be the ratio between Er
(
k0x

)
and Et. As shown in figure 6,

Rn is larger than 99.9% if k0x is larger than 4. This means that the mother wavelet
function is nearly complete if k0x is larger than 4. Antoine et al. (2004) pointed out that
the second terms of equations (4) and (7) can be numerically negligible for |k0| ≥ 5.6.
To simplify the mother wavelet function, we adopt k0 = (6, 0) to analyse the images in
our study:

Rn
(
k0x

) = [Er
(
k0x

)/
Et
]× 100% =

[� ∞
0
ψ̂
(
kx, k0x

)
dkx

/
Et

]
× 100%. (13)

3.2 Influence of the parameter ε on the wavelet function

In addition to parameter k0, the parameter ε from the matrix A in equations (4)
and (7) also influences wave image analysis by the 2-D CWT. Figure 7 shows that
parameter ε also controls the non-zero size (the wavelet function window) in the

1.0

(a) (b) (c)
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Figure 5. Influence of the parameter k0x upon the wavelet function in the spatial frequency
domain.
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Figure 6. Influence of the parameter k0x upon Rn
(
k0x

)
.

Figure 7. Relationship between the parameter ε and the non-zero size of the wavelet function
in the space and spatial frequency domains.

space and spatial frequency domains. If the non-zero size is too large, the correspond-
ing resolution would be poorer. According to the Heisenberg Uncertainty Principle
(Van Name 1960), the resolutions between the space domain and spatial frequency
domain are opposite. If the value of parameter ε increases, the resolution in the space
domain would be poor, but the resolution in the spatial frequency domain would be
precise. To verify the non-zero size of the wavelet function, the parameters σkx and σ x

are described in equations (11) and (14):

σx =
⎧⎨
⎩

� ∞
−∞

[
x −

(� ∞
−∞ x

∣∣∣ψ(x)∣∣∣2dx

/� ∞
−∞

∣∣∣ψ(x)∣∣∣2dx

)]2 ∣∣∣ψ(x)∣∣∣2dx

⎫⎬
⎭

0.5

, (14)

where σ x and σkx are the standard deviations of ψ(x) and ψ̂(kx), respectively. They are
related to the non-zero areas of the mother wavelet function in the space domain and
spatial frequency domain. Figure 8 shows that parameter σ x increases if ε decreases.
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Figure 8. Relationship of the parameters ε, σkx and σ x.

On the contrary, parameter σkx increases if ε increases. The resolution in the space
domain and the spatial frequency domain are both important for wave image analysis.
Therefore, parameters σ x and σkx should be as low as possible to obtain the ideal
resolution of the wavelet function in both the space and spatial frequency domains.
However, the Heisenberg Uncertainty Principle proves it is impossible to obtain the
lowest values of σ x and σkx using the same ε. To obtain the balance between σ x and
σkx , this work suggested that ε be set up with a value of 1.

3.3 Ideal resolution of wave field image

Wave image conditions are key to obtaining an accurate spectrum. Wave features for
poorer spatial resolution of the wave image may be severely aliased (Jahne 1995).
Significant wave information, such as wavenumber and wave direction, are influenced
by poor wave image resolution. Based on the Nyquist sampling limit (Henderson and
Lewis 1998), the case of wavelength longer than 2�x can be analysed if the spatial
resolution of the wave field is �x for wave image analysis using the 2-D FT. In other
words, the highest value in the spatial frequency domain is limited under 2π

/
(2�x) if

the spatial resolution of the wave field is �x. However, 2π
/
(2�x)may not be the spa-

tial frequency limitation using the 2-D CWT. Figure 9 shows that part of the wavelet
function would be cut off if the peak frequency of the wavelet function is close to the
limitation 2π

/
(2�x). This means an incomplete wavelet function would be used for

cases of high-frequency wave analysis. Due to the influence of window width, it is nec-
essary to use higher resolution in the 2-D CWT than in the 2-D FT. Here, we invest the
reasonable limitation of the spatial frequency for image analysis using the 2-D CWT.
As mentioned in the previous section, we first simplify the two-dimensional wavelet
function to one dimension. Let Dk (kx) be the distance between k0x and kx within the
wavelet function:

Dk(kx) = ∣∣kx − k0x

∣∣ , (15)
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Complete wavelet function

Wavelet function which is cut by Nyquist frequency

Nyquist sampling limit 2π/2Δx

3.5σkx

kx

ψ 
(k

x)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

ˆ

Figure 9. Influence of the Nyquist frequency limitation on the window width of the wavelet
function. σ x.

in which k0x was defined in the previous section. Let function Pk be the ratio between
ψ̂(kx) and ψ̂

(
k0x

)
:

Pk = ψ̂(kx) /ψ̂
(
k0x

)
. (16)

The resolution condition of the image should depend upon wavelength. To deter-
mine the ideal resolution condition, the wavelength of ocean waves is used here. If the
spatial frequency limitation does not cut off the wavelet function, Pk should match the
theory curve in figure 10. This theory curve describes the decayed feature of wavelet
function in the spatial frequency domain. Figure 10 reveals that the cases of wave-
length under 3.5�x are not long enough for wave image analysis using the 2-D CWT.
The spatial frequency limitation using the 2-D CWT should be less than 2π

/
(3.5�x).

To obtain accurate results, the spatial resolution of wave image should be shorter than
1/3.5 the wavelength of the ocean wave conditions.

3.4 Ideal size of the wave field image

Due to the numerical technique of the IFFT used in equation (8), the size of the wave
image in the space domain would influence the spectrum resolution in the spatial fre-
quency domain. Here, we discuss the ideal size of the discrete wave image. As shown
in equation (7), the second term can be omitted if k0 is large enough. Previous sections
of this study suggest that the value of ε be set to 1 and k0x be set to 6. Hence, equation
(7) can be simplified as:

ψ̂(k) = exp
(−0.5 |k − k0|2

)
. (17)
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Figure 10. Relationship between Dk (kx) and Pk.

For combining the relationship in equations (9) and (17), we obtain:

ψ̂b,θ ,a(k) = a exp (−ibk) exp
[−0.5 |ar−θ (k)− k0|2

]
. (18)

In the previous sections, we let the wavelet function oscillate only in the x direction,
or k0 = (k0x ,0

)
. We can simplify the wavelet function as:

ψ̂bx,a(kx) = a exp (−ibxkx) exp
[
−0.5

∣∣akx − k0x

∣∣2] . (19)

The term exp (−ibxkx) from equation (19) satisfies:

|exp (−ibxkx)| = 1. (20)

Therefore, equation (17) can be simplified as:

∣∣∣ψ̂bx,a (kx)

∣∣∣ = a exp
(
−0.5

∣∣akx − k0x

∣∣2) . (21)

Equation (19) presents the continuous function of the CWT. Consider the physi-
cal space series sampled with sampling space �x. The total amount of dimensional
space for Nx points, defined as the number of sample points of the wavelet, is Nx�x.
If the total non-dimensional space length is 2X , it is mapped for Nx points (Jordan
et al. 1997, Chuang et al. 2008). Figure 11 describes the relationship. The relation-
ship between the dimensional and non-dimensional sampling spaces can be obtained
through the number of sample points of the wavelet function:

∣∣∣ψ̂bx,a (kx)

∣∣∣ = a exp
{
−0.5

∣∣akx
[
(Nx�x)

/
(2X)

]− k0x

∣∣2} . (22)
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Figure 11. Relationships between measured spatial samples and wavelet function samples. Nx

represents the measured fluctuation sample points and �x is the sampling space.

As shown in equation (22), Let kxp represent the peak spatial frequency of
∣∣∣ψ̂bx,a

∣∣∣,
and the value of

∣∣∣ψ̂bx,a
(
kxp

)∣∣∣ would be largest if:

kxp = (2Xk0x

)/
(aNx�x). (23)

The value of
∣∣∣ψ̂bx,a

(
kxp

)∣∣∣ would be equal to a if equation (23) is satisfied. To deter-

mine the size of wave field images, the non-zero part of
∣∣∣ψ̂bx,a

∣∣∣ needs to be defined. Let

kxN be the edge of the non-zero part of
∣∣∣ψ̂bx,a

∣∣∣; this means that the value of
∣∣∣ψ̂bx,a (kx)

∣∣∣
can be seen to be zero if kx > kxN . We define Rt as:

Rt <

∣∣∣ψ̂bx,a
(
kxN

)∣∣∣/∣∣∣ψ̂bx,a
(
kxp

)∣∣∣ = exp

{
−0.5

[(
akxN�xNx

2X

)
− k0x

]2
}

. (24)

The proper size of the wave image can be obtained after determining the value of Rt:

Nx >
[
(2X)

/(
a�xkxN

)] {
k0x + [−2 ln (Rt)]

0.5
}

. (25)

4. Ocean remotely sensed image analysis

To examine the validity of the technique presented above and to test the algorithm
for computing the 2-D CWT, Chuang et al. (2008) applied simulated wave images to
verify the accuracies of image spectra using the 2-D CWT. Based on this study, the
comparisons between estimations and theoretical values for wave parameters show
that the 2-D CWT is capable of identifying the directional spectra and wave proper-
ties. Here, we use a satellite image and X-band radar image to verify the practicability
of the 2-D CWT. Satellite based remote-sensing instruments can now provide a large-
scale view of the wave field. The source for the satellite image dataset is the Global
Land Cover Facility (www.landcover.org). Fine-resolution imagery from QuickBird is
collected here. Figure 12 shows the wave field image near the Ujong Kulon National
Park in Indonesia with a mean pixel resolution of 0.66 m. The frame in figure 12 is a
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Figure 12. Satellite image near the Ujong Kulon National Park in Indonesia.

sub-image that we have extracted for image analysis. Figure 13 shows the image spec-
trum analysed by the 2-D FT. The spectrum corresponds to one wave component and
its mirror one in the opposite direction. This means the wave directions are ambiguous
for judging the 180◦ difference when a single wave image is transformed into the image
spectrum. The ambiguity could be eliminated by adopting a series of wave images. In
figure 13, kx and ky indicate the spatial frequency of the ocean waves in the x and y
directions. Based on wave theory, the ocean wavelength L can be obtained from k:

L = 2π
/

k, (26)

k =
(

k2
x + k2

y

)0.5
. (27)

Wave direction α can also be obtained:

α = tan−1 (kx
/

ky
)

. (28)

The image spectrum using the FT describes these wave features in the spatial fre-
quency domain. However, verifying local wave information of different areas from the
whole image is difficult because many different ocean wave components exist within
the whole ocean image. Compared to the spectra using the 2-D FT, figure 14 presents
the image spectra from the same sub-image using the 2-D CWT. The sub-image size
is 1024 × 1024 pixels. Based on the theories of 2-D CWT and discrete mathemat-
ics, we obtain 1024 × 1024 image spectra from the 1024 × 1024 pixels sub-image.
To display the calculated results simply on hard copy paper, we only present six spec-
tra from location A to location F, which are marked on figure 12. We observe that
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Figure 13. 2-D FT image spectrum analysed from the satellite image.

Figure 14. 2-D CWT image spectra analysed from the satellite image. Points A to F can be
found in the image shown in figure 12.
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peak wavenumber and dominant wave direction for each wave component gradually
change at different locations of the image. This shows that the wavenumber corre-
sponding to the energy contour at location A (offshore) gradually moves from a lower
value to a higher one at location F (nearshore). Spectral energy at a higher wavenum-
ber is more scattered than that at a lower wavenumber. This is because the higher
wavenumber component has lower resolution in the spatial frequency domain and
higher resolution in the space domain, known as the Heisenberg Uncertainty Principle
(Van Name 1960). The spectra also present the dominant direction of the energy
density as the spectrum moves from SSW to SW, revealing the wave refraction phe-
nomenon in the coastal area. The energy distribution from the Fourier spectrum is
similar to the energy distribution from the wavelet spectra. However, the wavelet spec-
tra are capable of presenting local wave features from different areas of the satellite
image.

This study also used images from X-band radar, which make it possible to obtain
ocean wave information (Young et al. 1985). Figure 15 shows radar images in the
southern part of Taiwan. The water depth in the area ranges from 5 to 100 m. The
current work collects 30 radar images from this area. Figure 16 shows that an example
using the 2-D CWT also displays a similar phenomenon to satellite image results. The
2-D CWT spectra present local ocean wave features from different radar image loca-
tions. This study has applied one-dimensional real wave spectra from an in situ data
buoy to show detailed spectral features. To compare the real wave spectra and image
spectra, the 2-D image spectra W

(
kx,ky

)
were integrated into one-dimensional spectra

W (k) via equation (27). Figure 17 shows a comparison of the real wave spectrum and
image spectra extracted by the FT and WT. The image spectra extracted by the FT
and WT in this study are called Fourier spectra and wavelet spectra, respectively. The
image spectra are calculated from the grey value on the remotely sensed images. Unlike
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Figure 15. X-band radar image observed in the southern part of Taiwan. The grey circle is the
area covered by the image.
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Figure 16. 2-D CWT image spectra analysed from the X-band radar image. Points A to F can
be found in the image shown in figure 15.
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Figure 17. Comparison of the real wave spectrum, FFT spectrum and CWT spectrum.

the real wave spectra, the energy of image spectra is not direct ocean wave energy. To
compare real wave spectra and image spectra, both the wave spectra and image spec-
tra are normalized. The real wave spectrum provides local spectral features at the data
buoy site. The Fourier spectrum presents spectral features of the whole radar image
and energy from lower spatial frequencies (k = 0.4–0.5 rad m−1) dominates the spec-
trum. The deviation between the peak spatial frequency of the real wave spectrum and
the Fourier spectrum is obvious. Although the wavelet spectra are all calculated from
the whole radar image, the local wavelet spectrum extracted from location C is similar
to the real wave spectrum. Figure 15 shows that location C is quite close to the data
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buoy location. This is why the CWT spectrum is similar to the real wave spectrum. Our
work reveals that the image spectra using the 2-D CWT present local wave informa-
tion clearly. The 2-D CWT should be an ideal method to present wave features from
radar images.

By observing the wavelet spectra, this study noticed nonlinear features at the loca-
tion from the shallower water image. Figure 18 shows the CWT spectra extracted at
locations F and A of the radar image. The water depth at locations F and A are about
10 and 60 m, which belong to intermediate water and deep water, respectively, for most
ocean wave cases within this area. To verify the relationship between energy and spa-
tial frequency, we normalized both the energy and spatial frequency from all spectra.
Some wavelet spectra in figure 18(a) show a second peak at around 2kp where kp, is
the peak spatial frequency, which should be the effect of wave nonlinearity. By observ-
ing the wave spectra from ocean wave time series, Herbich (1990) pointed out that
secondary spectral peak at a frequency that is about twice the main peak frequency
is almost entirely composed of secondary nonlinear components that belong to the
first group of bound waves. The nonlinearity of ocean waves is often conspicuous in
coastal regions (Hara and Karachintsev 2003). The harmonic energy peak in the shal-
lower water area is higher than that in the deeper water area. This means that the
degree of nonlinearity in shallow water is higher than that in deeper water. Compared
to figure 18(a), figure 18(b) presents the wavelet spectra extracted from location A of
the same image. No obvious secondary spectral peak exists at 2kp, revealing the signal
nonlinearity difference between images from intermediate water and deep water. By
observing wave image nonlinearity, the wavelet spectra present local effects in different
locations from the whole image.
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Figure 18. CWT spectra extracted from (a) intermediate water and (b) deep water.
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5. Conclusions

Ocean remote sensing is a potential tool to present ocean wave information in the
space domain. To extract wave information from images, applicable analysis algo-
rithms are necessary. Owing to possible inhomogeneities within coastal wave field
images, this study presents image spectra from remotely sensed images using a 2-D
CWT.

The original theory of 2-D CWT has been proposed before; here, we present how to
apply it to calculate local wave image spectra and optimize the algorithm. To speed up
image analysis processing using the 2-D CWT algorithm, we simplify the wavelet func-
tion and apply the numerical technique of IFFT to reduce operation counts. Due to
parameters from the wavelet function, such as k0 and ε, which influence image analysis
using the 2-D CWT, this study has explored appropriate values for these parameters.
Proper values of k0 and ε for applying the WT algorithm to image analysis have been
proposed. The relationship between ocean wave conditions and the limit of image
spatial resolution was also studied to understand the ideal conditions of an image.
Because of the influence of window width, higher image spatial resolution is necessary
for image analysis using 2-D CWT rather than by using 2-D FT.

Images observed from the satellite sensor and X-band radar are used here to verify
the practicability of 2-D CWT. We present wave inhomogeneities from ocean remotely
sensed images. The 2-D CWT image spectra reveal the phenomenon of wave refraction
nearshore. The 2-D CWT spectra are capable of describing local wave information
from different areas of an ocean image. Compared to real wave spectra from in situ
measurements, the wavelet spectra show more accurate spatial frequency features to
describe local wave features. The wavelet spectra also present wave nonlinearity from
shallower water. By observing wave image nonlinearity, the wavelet spectra present
local effects in different locations from the whole image. Different wave information
obviously influences the design of coastal structures. For future applications of coastal
areas, such as engineering design, disaster preparation and coastal management, local
wave information must be extracted accurately. To describe local wave features in the
space domain, 2-D CWT is an ideal tool.
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