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This paper concerns the storm surge calculation based on the algorithm of ensemble empi-
rical mode decomposition (EEMD). An accurate storm surge result is key information for
coastal disaster warning and prevention. Separation of storm surge magnitude from sea
level data has typically been done by specifying tidal input from main tidal harmonics.
Obtaining accurate storm surge magnitude with harmonic analysis (HA) requires at least
one month. This study discusses possible storm surge separation from short-term sea level
time series using EEMD. The current work reveals that EEMD is predominant for short-
term sea level data analysis shorter than thirty-five days. Due to different residues obtained
from EEMD, this work proposes a method to determine most ideal residue for representing
the storm surge.
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1. Introduction

The coastal region is a sensitive area within the boundaries of air, sea and land, and

suffers the impacts from these environments. Severe disasters, such as flooding, may

occur due to extreme meteorological and oceanic impacts upon coastal area topo-

graphy. To ensure coastal safety, a number of complex factors need to be considered.

The storm surge is one of the relevant factors facing most coasts worldwide; a highly

complex factor in coastal behavior. Due to obvious low-pressure, coastal water levels

increase under storm conditions. In addition, water volume is pushed towards the

shore by swirling winds. This rise in sea level can cause severe flooding in coastal

areas, particularly when the storm surge coincides with normal high tides. In areas

with large tidal ranges, storm surge can be most damaging while in the presence

of high tide. In addition to coastal flooding, storm-driven waves reach the front of

dunes due to the rising sea level, possibly resulting in near-shore erosion [Silvester

and Hsu, 1997].

Storm surge features are quite complex The interaction between storm system

and land also alter surge characteristics. To effectively understand the features of

storm surge, some studies used statistical approaches to analyze changes in the

occurrence and severity of storm surge events [Butler et al., 2007; Vrijling, 2001].

To describe the statistical features of storm surges, adequate surge data samples are

necessary. Numerical models are also common tools to obtain the surge information

[Eric and Marshall, 2009]. Earlier researches show that surface winds must be speci-

fied as a function of both space and time [Bode and Hardy, 1997; Moon et al., 2009].

Observations of meteorological data in the coasts are not always complete, thus

limiting surge calculation. In situ sea level measurement plays an important role in

evaluating and describing surge characteristics. Separating storm surge magnitude

from sea level data has typically been done by specifying tidal input from main tidal

harmonics. Due to regular astronomical processes, we can regard oceanic tides as

inherently regular. Harmonic analysis (HA) often describes water level variation as

the sum of a constant mean level, continuous from specific harmonics and a residual.

The residual from sea level data by HA can be seen as all nontidal effects on the

sea level. The positive and negative residuals are induced by wind stress, pressure

depression and wave set-up during typhoon events. On the right side of the typhoon

the positive residual surges are observed, while on the left side of the typhoon the

negative surges occur along the coast. Also, the sea level rise is associated with the

wave effect along the open coast due to the radiation stress [Kim et al., 2010]. How-

ever, separating these from the nontidal residual is difficult. Because storm surge

is the dominant phenomenon inducing sea level rise during typhoons, some studies

consider the nontidal residual as the storm surge [Lee, 2006; De Oliviera et al.,

2009]. This study also treats the nontidal residual as the storm surge instead of

discussing how to separate the storm surge, wave run-up, tsunamis, and climatic

effects.
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Fig. 1. Nontidal residuals calculated by HA with different lengths of sea level records.

HA is an ideal method to separate tide components and storm surge from sea

level record. To obtain storm surge magnitude accurately, we need enough length

of sea level record to determine the tidal harmonic components. Obtaining accurate

storm surge magnitude by HA requires at least one month sea level data, and reliable

calculation accuracy by HA increases with the length of sea level record [Reeve et al.,

2004]. Figure 1 shows different lengths of in situ sea level data analyzed by HA to

calculate the nontidal residual. Periodic oscillations for data lengths less than thirty

days are quite obvious. This means that the periodic components and nonperiodic

residual cannot be separated effectively by HA under this situation. As a result,

this study cannot obtain accurate storm surge data by HA for short-term sea level

data. In case the data is not long enough to obtain surge magnitude by HA, other

applicable methods are needed to address this subject.

Huang et al. [1998] proposed the algorithm of empirical mode decomposition

(EMD) for nonlinear and nonstationary data processing [Nunes et al., 2003]. The

decomposition is based on the local characteristic time scale of the signal and it

is applicable to nonstationary processes [Zhang and Gai, 2006]. Due to the prob-

lem of mode mixing for determining correct components, Wu and Huang [2008]

improved the algorithm, naming it EEMD which has proved to be versatile in a

broad range of applications for nonlinear and nonstationary data processes [Gan

et al., 2008; Peel et al., 2009]. Unlike the HA which decomposes the analyzed data

as different sine/cosine components, the EEMD decomposes the signal as different

intrinsic mode functions (IMFs) as defined by Huang et al. [1998]. In addition to

IMFs, residues separated from sea level data also provide significant information. Ho

et al. [2004] retrieved sea surface temperature trends to discuss warming trends of

different seasons. McMahon et al. [2007] analyzed global streamflows, revealing that
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the intra-decadal streamflow component significantly relates to the residual or trend

component. Based on previous studies, the EEMD should be workable to extract

storm surge magnitude from the sea level record. It is the purpose of this article to

develop a procedure for deriving storm surge magnitude from residuals of short-term

sea level time series by implementing the EEMD. To verify the practicability of this

work, the current study proposes a theoretical basis for deriving surge. Sea level

data from different cases are used to discuss the accuracies and the features of the

surge results Finally, we verify the predominance of EEMD for short-term sea level

data analysis.

2. Theoretical Preliminaries

Introducing the EEMD algorithm begins from the EMD. The EMD technique is

capable of decomposing time series into different oscillating intrinsic components

which are called IMFs. Depending on the nature of the time series under study,

the IMFs and the residual component may exhibit linear or nonlinear behavior

[McMahon et al., 2007]. Unlike the Fourier transform, an IMF is not restricted to a

narrow band signal, but can be both amplitude and frequency modulated. Based on

the idea of Huang et al. [1998], the time series of sea level x(t) can be decomposed

by the EMD as follows:

(i) Identify all the maxima and minima of x(t) within the whole time domain.

(ii) After identifying the extrema of x(t), all the local maxima are connected by

a cubic spline as the upper envelope U(t). Problems of the spline fitting may

occur near the ends, where the cubic spline fitting can have large swings. Even

with these problems, Huang et al. [1998] pointed out that the sifting process

can still extract the essential scales from the data. Repeat the similar procedure

for the local minima to produce the lower envelope L(t). U(t) and L(t) should

cover x(t) between them.

(iii) Compute the average of upper and lower envelopes, m(t) = [U(t) + L(t)]/2.

(iv) Subtract m(t) from x(t) to extract the detail, h(t) = x(t)−m(t). h(t) may be

the first IMF from the time series.

(v) Check whether h(t) is an IMF or not.

Ideally, h(t) should be an IMF. However, overshoot and undershoots of

the data processing are common, which can also generate new extrema, and

shift or exaggerate the existing ones. Each IMF should meet the following

requirements. First, the local maxima of the data series are always positive and

the local minima are negative, respectively [Daetig and Schlurmann, 2004]. In

other words, the number of extrema and the number of zero crossings must

either equal or differ at most by one. Second, the mean value of the envelopes

defined by the local maxima and by the local minima is zero at any data

location. This idea modifies the classical global requirement to a local one so

that the instantaneous frequency will not have unwanted fluctuations induced
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by asymmetric wave forms. Ideally, the requirement should be a zero local mean.

Huang et al. [1998] pointed out that the envelope mean m(t) may be different

from the true local mean for nonlinear data; consequently, some asymmetric

wave forms can still exist no matter how many times the data are sifted. If h(t)

satisfies the requirements above, then extract IMF and replace x(t) with the

first residual r(t):

r(t) = x(t)− h(t) . (1)

If h(t) is not an IMF, then further sifting is necessary, to replace x(t) with h(t)

(vi) Repeat steps (i)–(v) until no more IMF can be extracted and the residual, rn,

becomes a monotonic function from which no more IMFs can be extracted.

The whole EMD procedure can be described as the flow chart of Fig. 2 Wu

and Huang [2008] pointed out that the EMD data composition may consist of

different physical processes, or mode mixing, represented in an IMF, caused

mostly by intermittent driving mechanisms. Mode mixing is defined as any

IMF consisting of oscillations of dramatically disparate scales. Any IMF which

Start

Sea level data x(t)

rn−1(t) = x(t), n = 1

n = n+ 1
hk−1(t) = rn−1(t), k = 1

Calculate Uk−1(t), Lk−1(t): upper and lower envelopes of hk−1(t)
k = k + 1

Calculate mk(t): average of Uk−1(t) and Lk−1(t)

hk(t) = hk−1(t)−mk(t)

YES

NO

Is it an IMF?

YES

rn(t) = rn−1(t)− hk(t)

Can be decomposed?

NO

End

Fig. 2. EMD flow chart for separating storm surge magnitude from sea level data x(t). In the figure,
hk(t) is IMF if hk(t) satisfy the requirements which we mentioned in the section of theoretical
preliminaries. rn(t) is the residual after separating the IMF for sea level data.
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occurs through mode mixing ceases to have physical meaning by itself and may

result in wrong separation of storm surge from sea level data. To overcome

the IMF mode mixing problem, Wu and Huang [2008] proposed the EEMD,

in which added white noise populates the whole time–frequency domain with

constituting components of different scales before starting the EMD process.

This data preprocess is the main difference between EMD and EEMD. The

added white noise plays the role of filling in different scales of the original

signal where the noise can be cancelled out in the ensemble mean when enough

trials are used in the EEMD process [Zhang et al., 2009]. When signal is added

to this white background, signal bits of different scales are automatically pro-

jected onto proper scales of reference established by the white noise in the

background. Though EEMD adds different white noise to the data, the mean

of IMFs of different cases in the later procedure efficiently reduces white noise

influence. Theoretically, infinite number of ensemble trials would cancel out the

added white noise completely. However, this is not feasible for real-world appli-

cations. Zhang et al. [2009] suggest that number of ensemble trials should be

approaching 100. This value is adopted in this study. Figure 3 shows the whole

EEMD procedure. We generate 100 different zero-mean Gaussian white noise

series based on the normally distributed random numbers, and add different

Start

Sea level data x(t)

i = i+ 1
xi(t) = x(t) + wi(t)

YES

Analyze xi(t) by the EMD

Different IMFs of case i:hi,1(t), hi,2(t), hi,3(t), ..

Continue the next xi(t)?

NO

Calculate the mean of IMFs:
[

N
∑

i=1

hi,k(t)

]/

N

Obtain the final IMFs: h1(t), h2(t), h3(t), ..

End

Fig. 3. EEMD flow chart for separating storm surge magnitude from sea level data x(t). In the
figure, wi(t) is white noise.
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Time (h)

Time (h)

Fig. 4. (a) In situ sea level time series; (b) energy spectrum of sea level time series; (c) the Gaussian
white noise series; and (d) energy spectrum of white noise.

white noise series to the sea level series, respectively. By the EMD procedure

of these noise-added sea level series, we can obtain 100 different IMFs: hi,1(t),

hi,2(t), . . . , where i = 1, 2, . . . , 100. Average these 100 IMFs, respectively, we

can obtain the final IMFs: h1(t), h2(t), . . . . Figure 4 shows the cases of sea

level data and the created white noise. Figures 4(a) and 4(b) represent one

case of in situ sea level data and its energy spectrum where the energy density

focuses around 1 day−1 and 2 day−1. Figures 4(c) and 4(d) represent one case

of the zero-mean Gaussian white noise series and its energy spectrum. The

white noise spectrum shows that the energy is distributed within the whole

frequency domain. The sampling rate of our sea level data is 24 day−1. Based

on the Nyquist frequency, the white noise in the frequency domain is within

domain of (0, 12) day−1.

3. Sea Level Data Analysis by EEMD

3.1. Data collection

Sea level records used here are measured at nine different tide stations around

Taiwan (Fig. 5). Taiwan locates between the tropics and the subtropics, averaging
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Fig. 5. Tide stations whose data are used in this study.

3.5 typhoons attacks every year. Surge characteristics on the Western and Eastern

side of Taiwan are quite different. The current work collects sea level records from

2001–2007 at nine different tide stations. This research applies the in situ sea level

records to verify EMD practicability to derive storm surge magnitude from the

short-term data. In addition to in situ sea level data, the worldwide tidal component

data from satellites also provide powerful water elevation information offshore. The

recorded time length of tidal data should not be a serious problem in theory. How-

ever, the tidal waves would be influenced by the near-shore topography. To obtain

real tidal features within this area, coastal tide data are still necessary. Therefore,

an applicable algorithm for short-term coastal tide data analysis is still significant.

3.2. EEMD data analysis

Figures 6 and 7 show the ten-day sea level records and its IMF results. Data input

presents the original sea level data measured at the Shihti tide station on the Eastern

side of Taiwan. Figure 6 shows that the IMF1 and IMF2 present components that

oscillate about one to two times daily. These are mixed tides related to tides between

the diurnal and semi-diurnal tides. However, the IMF1 and IMF2 waveforms are not

monotonous sinusoidal waves and IMF frequencies and amplitudes are not steady.

In other words, the IMFs present nonstationary characteristics of the data.
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Fig. 6. Ten-day sea level records at the Shihti tide station and its IMFs.

Fig. 7. Other IMFs and residue analyzed at the Shihti tide station.
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To verify their frequency band, this study calculates the energy spectrum of

different IMFs by the Fourier transform (FT) (Figs. 8 and 9). The peak frequencies

of IMF1 and IMF2 are 1/12.2 h−1 and 1/25.6 h−1. They are almost the same as

frequencies of well-known diurnal and semi-diurnal tides. Based on Eqs. (2) and (3),

different residues can be calculated by subtracting different IMFs from the sea level

records:

r1(t) = x(t)− h1(t) , (2)

rn+1(t) = rn(t)− hn+1(t) n ≥ 1 , (3)

where hn(t) is the nth IMF, rn(t) is the nth residue. This work compares different

residues rn(t) in Fig. 10. The reliable storm surge values SL(t) are calculated by

the HA with six-year in situ sea level data whose length should be sufficient to

separate periodic tides from nontidal residue. This case presents that the trend of

r2(t) is quite similar to SL(t). Despite obvious deviations between r2(t) and SL(t),

the deviations are stable with time. Thus, this research effectively reduces surge

calculation error by subtracting the mean of these differences. Compared to the

EEMD result, the HA residue with ten-day data ST (t) still contains obvious periodic

oscillations. Since these oscillations are unstable and irregular, the difference between

the ST (t) and SL(t) cannot be improved effectively. To verify accuracies of the storm

surge calculation by EEMD and HA, this work calculates the root mean square

deviation (RMSD, RD) between SL(t) and calculated storm surges:

RD =

√

∑n
i=1 [SL(ti)− η̂(ti)]

2

n
, (4)

where η̂(ti) is the calculated storm surge by the EEMD and HA from ten-day sea

level records, and n is the number of total data sets. This research collects forty-

three data sets of sea level records from each tide station during typhoon events.

To present all the results from these data sets, we use the box and whisker plots.

From each box and whisker plot, the top and bottom of each box are the 25th and

75th percentiles of the samples, respectively. The line in the middle of each box is

the sample median. The upper and lower whiskers present the highest and lowest

results from the samples. Figure 11 shows that the left box and whisker plot of

every station present the RMSD between SL(t) and the calculated storm surge by

the EEMD; the right box and whisker plot present the RMSD calculation by the

HA. For each typhoon case, the current study obtains one value of RD. The box

and whisker plot presents the median, highest, lowest, 25th and 75th percentiles

of the RD samples. In Fig. 11, the left box and whisker plot from every station

shows lower RD values than the right one. This means the storm surge calculated

results by EEMD are more accurate under the case of ten-day sea level record

calculation.
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Fig. 8. The Fourier spectra of sea level records and its IMFs in Fig. 6.

Fig. 9. The Fourier spectra of IMFs and residue in Fig. 7.
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Fig. 10. The relationship among storm surge SL(t) and different residues analyzed at the Shihti
tide station.

Fig. 11. The RMSD of storm surge calculation using EEMD (left box and whisker plots) and HA
(right box and whisker plots).
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4. Discussion

4.1. Orthogonality and completeness of the IMFs

These IMFs from EEMD helps in better understanding of the internal structure

of the signal. The IMFs should be locally orthogonal to each other. The higher

orthogonality corresponds to less leakage of information [Klionski et al., 2008; Zhang

and Gai, 2006]. To measure the efficiency of the IMFs, the orthogonality of the

decomposition should also be checked. To check the orthogonality of the IMFs,

Chang et al. [1997] and Molla et al. [2006] use the index of orthogonality (Ojk):

Ojk =
1

T

∑

t

{

[hj(t) · hk(t)]

[h2j (t) + h2
k
(t)]

}

j, k = 1 ∼ (M + 1) , (5)

where hj and hk are jth and kth IMFs, hM+1(t) means the last residue after the

EEMD. If the decomposition is orthogonal, then the value of Ojk should be zero

[Zhang and Gai, 2006]. A set of perfect orthogonal IMF components will give zero

values of Ojk. In practice, the accepted value Ojk is smaller than 0.1. As shown

in Fig. 12, it presents the indices of orthogonality between all possible pairs of

Fig. 12. The indices of orthogonality between all possible pairs of IMFs (Shiti station).
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Fig. 13. The analyzed results of indices of orthogonality from the data set at different stations.

Fig. 14. The normalized root mean squared deviation between the original and reconstructed data.

IMFs from the data set in Shiti station. The IMFs are decomposed from the sea

level data in Shiti station. The maximum value of the indices of orthogonality is of

the order 10−5. Figure 13 shows the indices of orthogonality from the data set in

different stations around Taiwan. Each circle symbol in Fig. 13 presents the indices

of orthogonality between hj and hk. It shows that all of the indices of orthogonality

are substantially less 0.1. The orthogonality of sea level data is satisfied.

In addition to the orthogonality, the completeness of the EEMD on sea level data

analysis should be identified too. To check the completeness, this study reconstructs

the sea level data from all the IMF components. Figure 14 shows the normalized

root mean squared deviation (NRMSD, RN ) between the original and reconstructed

data

RN =
RD

(xmax − xmin)
, (6)
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where xmax and xmin are the maximum and minimum of the sea level time series,

respectively. Since different white noise is added to the time series, there are devia-

tions between the original and reconstructed data. However, the mean of IMFs of

different cases in the later procedure efficiently reduces deviations. The NRMSD is

of the order 10−5 as shown in Fig. 14. It reveals that EEMD is a lossless decom-

position for the sea level data and the completeness of the decomposition is thus

demonstrated. By observing the orthogonality and completeness, this study reveals

that the EEMD is applicable to decompose the sea level data.

4.2. Accuracy of storm surge calculation by EEMD and HA

Figure 11 presents that geographical locations of tide stations influence sea level

data analysis by HA. The figure also presents poorer HA accuracies for tide stations

located on the Western side of Taiwan, especially the middle part of the Taiwan

Strait. This should be the reason for different tidal ranges. Figure 15 shows the

analysis of maximum tidal ranges from forty-three typhoon events, revealing that

tidal ranges on the Western Taiwan coasts are much higher than those in Eastern

Taiwan. For the Kinmen station, all tidal ranges from different typhoon cases are

larger than 4m. As previously mentioned, HA cannot efficiently remove periodic

components from short-term sea level data. As a result, tidal energy still partially

attaches to the residue after HA. HA deviations should be obvious for high tidal

range cases. Compared to HA results, EEMD calculated results show higher accuracy

Fig. 15. Tidal range analyzed from different tide stations.



October 31, 2011 9:46 WSPC/101-CEJ S0578563411002343

238 L.-C. Wu et al.

for short-term sea level data analysis. As presented by Huang et al. [1998], IMFs

can be nonstationary components from the original data. This means that any IMF

separated from sea level data by EEMD can be the time series with multi-periods

and amplitudes. For short-term data analysis, long period tidal components over ten

days can be combined together in the IMFs. This explains why Figs. 6 and 7 show

IMFs as the nonstationary time series. As a result, EEMD residues can be separated

from the periodic components more efficiently for short-term sea level data analysis.

Though the maximum RMSD by the EEMD can reach 15 cm as shown in Kinmen

station of Fig. 11, it is much smaller than HA results for short-term data analysis.

In addition, the calculated results by EEMD do not depend upon obvious tidal

ranges. For high tidal range cases, synchronized high astronomical tide and storm

surge are quite dangerous on the coasts. An accurate storm surge magnitude is key

information for disaster warming and prevention. The EEMD shows the advantage

of storm surge calculation for short-term analysis and high tidal range.

As mentioned, the EEMD is more advantageous than HA to analyze short-term

sea level time series. To clarify storm surge calculation by EEMD and HA, this

section discusses the relationship between the length of analyzed sea level data

and the accuracy of storm surge calculation. Figure 16 shows that EEMD accuracy

is stable with the length of analyzed data. Unlike EEMD results, HA accuracies

Fig. 16. Relationship between lengths of sea level time series and EEMD and HA accuracies.
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Fig. 17. Accuracy of different rn representing storm surge.

improve with the longer length of analyzed data. For analyzed data longer than

thirty-five days, the accuracies of HA and EEMD data analysis are similar. The

results by HA should be accurate if sea level records are long enough. In other

words, HA and EEMD should be complementary on storm surge calculation for data

analysis of different lengths of sea level records. This work reveals that the EEMD

is more predominant for short-term sea level data shorter than thirty-five days.

4.3. The relationship between EEMD residue and storm surge

Equations (2) and (3) show obtaining different IMFs and residues rn(t) by EEMD.

The residues provide key information to describe the storm surge. This section dis-

cusses which residue provides accurate storm surge magnitude. The current study

calculates deviations among the storm surge and different residuals. The mean

RMSD of forty-three data sets from different typhoon cases are applied to determine

accuracy of storm surge calculation. Figure 17 reveals that r2 or r3 more accurately

describe storm surge than other residues except for the cases from Hengchun, Suao

and Longdong. Equation (3) shows that the residue is calculated from IMF. We

can discuss the residue characteristics from IMFs. Figure 18 shows calculating the

Fourier spectra of IMF2. The spectra in the figure are averaged results, due to the

analysis of forty-three data sets from different typhoon cases. Similar to the IMF2

spectral result in Fig. 8, all of the spectra in Fig. 18 present the energy density

focus on the frequency band around 1 day−1. Similar results occur from all other
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Fig. 18. Averaged spectra of IMF2 at different stations.

cases and they all approximate to the frequency band of diurnal tide. It seems the

IMF2 should be capable of separating components approximate to the diurnal tide

from our cases. However, the Fourier spectra of IMF3 (Fig. 19) shows that obvious

energy approximate to the diurnal tide still attaches within the IMF3 in some cases.

Figure 19 shows that the IMF3 spectra from Penghu, Hengchun, Longdong, Suao,

Shihti, and Fugang maintain energy on the frequency band around 1 day−1. In these

stations, accuracy is poorer using r2 to present the storm surge than using r3. As

discussed in the previous section, the r2 and r3 can be obtained by:

r2(t) = x(t)− h1(t)− h2(t) , (7)

r3(t) = x(t)− h1(t)− h2(t)− h3(t) , (8)

where hn(t) is the nth IMF separated from the time series x(t). The spectra show

that some energy approximate to the diurnal tide still maintains within the r2(t).

To accurately extract storm surge magnitude, it is more ideal to use r3(t) in which

some diurnal tide energy have been removed from r2(t).
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Fig. 19. Averaged spectra of IMF3 at different stations.

5. Conclusions

Synchronous high astronomical tide and storm surge have severe impact upon coasts

and estuaries, resulting in possible flooding disaster in these areas. HA is a common

and useful algorithm to separate tidal harmonics and nontidal residues, and storm

surge magnitude is contained in nontidal residues. However, HA is recognized as

a practical long-term data analysis. For short-term sea level data analysis, error

from HA results would be unavoidable. The algorithm of EMD and EEMD was pro-

posed for data and signal processing. Many studies have confirmed its practicability

on nonlinear and nonstationary data processing. This study applies the EEMD to

separate tidal harmonics and nontidal residues.

The analyzed results of EEMD present components of sea level data by different

IMFs. By observing the orthogonality and completeness, this study reveals that the

EEMD is applicable to decompose the sea level data. To describe the characteristics

of tidal components, IMFs provide a different idea to monotonous amplitudes and

periods of sinusoidal waves. For short-term sea level time series analysis, this work

reveals that storm surge calculated results using EEMD are more accurate than
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that using HA. Compared to EEMD results, calculated accuracy by the HA heavily

relates to tidal range of the sea level area. The EEMD algorithm is practical for

storm surge calculation for short-term analysis and high tidal range. However, two

different residues from EEMD may be ideal to represent storm surge, making it

necessary find out which one is best. This study proposes a way to determine the

best residue using IMF spectra, which is verified by nine different tide stations

around Taiwan, confirming it using more data sets from different stations around

the world is necessary.

To understand the characteristics of storm surge calculation by EEMD, the cur-

rent study calculates storm surge using various lengths of sea level records. Findings

show that HA and EEMD should be complementary for storm surge calculation. HA

is appropriate for long-term data analysis; the EEMD is predominant for short-term

sea level data shorter than thirty-five days.
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