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VOF for the Free Surface Flows of Breaking Waves 

Chih-Min Hsieh1    Tai-Wen Hsu2    Chin-Yen Tsai2    Zbigniew Pruszak3 

ABSTRACT 

A numerical model for simulating breaking waves on a sloping bed was developed. 
A RANS (Reynolds Averaged Navier-Stokes) based model and the embedding method 
for bluff body flows on a solid object were employed by taking account of the fully 
nonlinear, viscous and turbulent effects on the wave breaking problem. Based on a 
staggered computational mesh, an explicit numerical algorithm is employed with a 
predictor-corrector procedure of pressure and velocity field computation. To track the 
free surface movement with wave breaking, the volume of fluid (VOF) method is 
implemented. Coupling the VOF and the embedding method, the treatment on free 
surface problem and complex bottom topography can be easily accomplished. 
Comparing with the existing experiments, a good agreement is found between 
numerical results and measured data. 

1. INTRODUCTION 

When waves reach a beach and enter water that is nearly as deep as the waves are 
high, they become unstable and break with the crest thrown forward as the wave 
disintegrates into bubbles. Wave breaking is one of the most commonly observed 
features of water waves propagating from deep water to shallow water, over a sloping 
bottom. On the other hand, submerged coastal structures are also frequently used for 
coastal protection from wave attack. The main purpose of this structure is to reduce the 
transmitted wave energy by reflecting waves and dissipating wave energy over the 
structure by breaking up the propagating waves. 

When wave breaking occurs, a large amount of wave momentum will be released 
to the surface layer of surf zone. Breaking waves also play an essential role in the surf 
zone for an entire coastal process. For example, strong turbulence produced by breaking 
waves could stir up sediment particles into the flow. Changes of sediment subsequently 
result in sediment transport may cause beach erosion and related coastal disasters such 
as wave overtopping, coastal flooding and failure of coastal structures, and so on. 

Notably the existing potential theories describing the evolution of wave profile of 
breaking waves normally neglect the effect of viscosity and turbulence. In order to 
simulate the process of real flow interaction which takes place on sea bottom or around 
submerged structures, the full Navier-Stokes equations with exact free surface boundary 
conditions should be solved. Computational efficiency and reliability are key elements 
of the model for simulating wave breaking process. In this research, we developed a 
numerical model to calculate the flow dynamics and water free surface deformation for 
periodic waves traveling on different types of sloping bottom with breaking and energy 
dissipation. The feasibility of the numerical model was verified through a series of 
comparisons of numerical results with the existing analytical solutions and the 
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experimental data. The good agreements demonstrate the satisfactory performance of 
the developed numerical model. 

The purpose of this paper is to perform numerical simulations of numerical 
simulations in investigating the deformation of periodic waves and breaking process on 
a sloping bed by the VOF method and embedding method. The applicability of the VOF 
method on the wave breaking problem is discussed. The mean flow pattern and 
turbulent kinetic energy distribution under wave breaking are explored using the 
developed numerical model. 
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Fig1. Schematic diagram of periodic wave train over a sloping bed 

2. GOVERNING EQUATIONS 
The physical problem considered in this study is the propagation of a 

two-dimensional periodic wave train traveling toward the sloping bed and the varying 
topography. The Cartesian coordinate system is employed in this study as shown in Fig. 
1. Herein, h denotes the quiescent water depth in front of the sloping beach, H the wave 
height of incident periodic waves. 

The Reynolds decomposition method is applied to simulate the turbulence effect. 
The governing equations which describe the mean quantities of the flow field for 
unsteady incompressible turbulent flows are denoted as  

continuity equation 
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in which x and z are the coordinates in a fixed Cartesian system respectively, t is the 
time, U and W are the mean velocity components in the x- and z-directions, respectively, 
P is pressure, g is the gravitational acceleration, tν  is the eddy viscosity, ν  is the 
molecular viscosity, ( / , / )x z∇ = ∂ ∂ ∂ ∂  is the gradient operator; and k is the turbulent 
kinetic energy. 
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The standard k ε−  model is employed here to resolve the eddy viscosity in the 
present study. The eddy viscosity is determined by the turbulent kinetic energy k and 
energy dissipation rate ε  using the following formula 

ε
ν µ

2kC
t =  (4) 

The governing equations (1)-(3) are closed by the transport equations of the Turbulent 
Kinetic Equation (TKE) and Energy Dissipation Equation (EDE): 
 

ε
σ
νν

∂
∂

∂
∂

∂
∂

−+⎥
⎦

⎤
⎢
⎣

⎡
∇+⋅∇=++ Prodk

z
kW

x
kU

t
k

k

t )(  (5) 

k
CProd

k
C

z
W

x
U

t t
t

2

21)( εενε
σ
ν

ν
∂
∂ε

∂
∂ε

∂
∂ε

ε

−+⎥
⎦

⎤
⎢
⎣

⎡
∇+⋅∇=++  (6) 

where Prod term represents the production of turbulent kinetic energy denoted as 
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Herein, kσ , εσ , Cµ , 1C  and 2C  are empirical coefficients and are taken to be 
1.0kσ = , 1.3εσ = , 0.09Cµ = , 1 1.44C =  and 2 1.92C =  as suggested by Rodi (1980) 

and Hsu et al. (2004). 

3. INITIAL AND BOUNDARY CONDITIONS 
For the above-mentioned initial boundary value problem, appropriate initial 

condition and boundary conditions are required. At the beginning of the flow simulation, 
the initial flow field is assumed to be still, so that the velocity components U and W are 
both set to be zero throughout the whole flow field. The hydrostatic pressure is utilized 
for the first stage of the pressure field. For the turbulence quantities k and ε , the 
specification of initial condition requires more careful treatments to avoid singular 
terms existing in the EDE when k = 0. Following Lin and Liu (1998), we specify the 
initial value by setting 2/2

pUk = , where pp CAU 1= , pU  and pC  are the horizontal 
mean velocity and wave celerity on the upstream boundary, respectively. 1A  is taken 
to be 3105.2 −× in the present computation. 

There are four boundary conditions considered in this flow, including the upstream, 
downstream, free surface, and solid surface boundaries. In the numerical computations 
the free-surface displacements and the velocity components of two kinds of periodic 
waves are given as the inflow conditions at x = 0, the upstream end of domain. The first 
kind of periodic wave is co-sinusoidal wave based on linear wave theory. The other 
incident wave is Cnoidal (Cn) wave. The wave profile can be expressed as (Ispbe et al., 
1978) 
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where L/2πκ = , L is the wave length, and 
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Coefficients nA and nmB in Eqs. (8) to (10) are determined according to Isobe et al.’s 
theory. cn, sn, and dn are Jacobian elliptic function. On the other hand, a radiation 
boundary condition proposed by Orlanski (1976) is imposed at the downstream to let 
progressive waves outgoing without reflection. 
The boundary conditions on the solid surfaces including the bed and the undulation 
surfaces are assumed to be impermeable and non-slip. That is, the velocity components 
U and W are equal to zero at those boundaries. On the free surface boundary, one kinetic 
and two dynamic boundary conditions are used. They are denoted as, 
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Boundary conditions for k and ε  on a free surface are (Launder, 1989) are 
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where n is the normal direction of a free surface. 

3.1 Volume of Fluid Method 

Like other studies of free surface flows, we also encounter difficulties in treating 
the free surface boundary conditions. Thus an suitable way of finding the free surface is 
important in numerical calculation. The piecewise linear interface calculation (PLIC) 
method developed based on the concept of VOF is adopted in this study to track the 
complicatedly and rapidly changed water surfaces during wave breaking. 

The main principle of VOF is established according to the material transport 
conservation theory (Hirt and Nichols, 1981). Based on this theory, we can define a 
variable called the VOF function, F(x,z,t) which represents the fractional volume of 
fluid occupied on every cell and the mechanism can be described by the following 
formula 
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The variable F ranging from 0 to 1 is also defined at the center of a computational cell. 
That is, the computational cells can be divided into three kinds. A cell full of fluid is 
called a fluid cell and has the value of 1. On the other hand, if a cell does not contain 
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any fluid, it will be called an empty cell and has zero value. Lastly, cells that are 
partially filled with fluid are called surface cells and have the values between 0 and 1.  

To solve Eq. (15) and reconstruct the free surface, Gueyffier et al. (1999) proposed 
a VOF/PLIC algorithm with second order accuracy. The procedure for this algorithm is 
divided into two steps: a reconstruction step and a propagation step. The first step is the 
determination of the orientation of the segment and the area occupied by water in a 
surface cell with the known volume fraction F. After reconstructing the free surface, its 
motion by the underlying flow field need to be modeled appropriately in the 
propagation step. In the present study, a Lagragian advection technique is utilized to 
advect the interface segments and evaluate the corresponding volume fluxes in the fluid 
cell. 

3.2 Embedding Method 

The embedding method proposed by Ravoux et al. (2003). The embedding method 
refers to a scheme for flows in the vicinity of stationary or moving solid bodies using a 
space-filling Cartesian grid that passes through the solid bodies as well. The governing 
equations for fluid flow are solved everywhere, including the cells which are occupied 
by the solid body. The presence of the solid body is accounted for, however, by adding 
a force field to the momentum equations in those cells that are fully or partially 
occupied by the solid phase. The magnitude and direction of this body force density is 
determined at each time step by requiring the value of the velocity in those cells to 
match the prescribed velocity of the solid body. This is done with the aid of a 
volume-fraction field that determines what fraction of each computational cell in the 
Cartesian grid is occupied by the solid phase. In cells where the solid volume fraction is 
unity, the velocity is set exactly equal to that of the body, and in those where the volume 
fraction is between zero and one, the velocity is only adjusted partially, in proportion to 
the volume fraction. Cells which are free from the solid and have a volume fraction of 
zero do not possess this body-force and are not affected in that step of the computation. 

4. MODEL VALIDATION 
The physical problem considered here is the propagation of a two-dimensional 

periodic wave train shoaling on a sloping bottom. Three cases of different bottom types 
including uniform slope, bar type and step type are chosen to validate the developed 
model. Table 1 shows the numerical conditions for each test case. 

Fig. 1 shows the schematic view of the numerical wave channel for case A where 
the distance between x = 0 m and the begin of the slopping bed is 0.7 m and z = 0 m is 

Table1. Numerical conditions of test cases for model validation 
Case Bottom type Wave height H (m) Wave period T (s) Wave profile 

A uniform slope 0.125 2.0 Cn wave 
B bar type 0.07 0.94 co-sinusoidal wave 
C step type 0.07 1.18 co-sinusoidal wave 

located at the bottom. Ting and Kirby (1994) performed experiments to investigate the 
evolution of a spilling breaking Cn wave over the 1/35 slope. The incident wave heights 

iH  and period T in the constant water depth are 0.125 m and 2.0 s for the spilling 
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breaker, respectively. They measured time histories of surface elevation at 4 various 
locations over the bed. In the numerical simulation, the computational domain is 20 m 
long and 0.8 m high. Fig. 2 is the comparison of the water elevations at the shoaling 
regions and a bore region. It reveals very close agreements existed between the 
predicated elevations shown in solid line and the measurements denoted as circles. 

Fig. 3 shows the comparison of the predicated wave crest, trough and mean water 
level distribution, among Ting and Kirby’s data, and numerical results given by 
Bradford (2000) and present model. The predicated wave crest profile agrees with 
other’s results except for the values in the region x = 5~7 m. The wave breaking 
happens at x = 6.4 m, so it is a critical region to compare. Furthermore, the predicated 
wave trough profile agrees with their data well. The mean water level profile is very 
interesting, because it is lower then the still water level before the wave breaking point x 
= 6.4 m and arises gradually after the breaking point. 

The comparison of the averaged velocity components are presented in Fig. 4. The 
overall agreements between computed and measured results are found to be good at 
different locations in the surf zone. From Figs. 2 and 4, it is demonstrated that the 
developed model is capable to simulate the wave transformation and flow field for 
spilling breaking wave on a uniform slope bottom. 

At the post-breaking stage, the wave energy may recovery following another 
occurrence of wave breaking if the local water depth does not decrease gradually 
shoreward. Therefore, numerical simulations of periodic waves propagating on 
composite slope bottom are carried out to evaluate the performance of the present model 
on wave recovery. Nagayama (1983) measured the wave deformations on a bar type and 
step type bottom as shown in the lower row of Fig. 5. The wave conditions for these two 
laboratory experiments are listed in Table 1 as cases B and C, respectively. 

Fig. 5 shows the computed wave heights in upper row, the surface elevations at 
different time steps and the envelopes in the middle row, and the profiles of composite 
slope bottoms in the lower row. It is seen clearly that the recovery of wave energy take 
places while the post-breaking wave propagating on the section with increasing or 
constant water depth. Moreover, the locations of first and second breaking points are 
well predicted in comparing with the experimental data. In general, the present model 
results agree well with the measurements but slightly overestimated in the surf zone for 
case C. 
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Fig2. Comparisons of simulated (solid line) and measured (circles, Ting and Kirby 1994) 

water elevations at the shoaling region (a)-(c) and the bore region (d) 
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Fig3. Computed and measured spatial distribution wave crest, 
 mean water level, and wave trough 
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Fig4. Comparisons of averaged horizontal (a, c) and vertical velocities (b, d) 
 at different locations in the surf zone 
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Fig5. Computed wave heights and wave envelopes for two cases 
 of different composite slope bottoms 
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5. RESULTS AND DISCUSSION 
In this section, we present some discussion on mean flow field and turbulent kinetic 

transport mechanism under wave breaking on sloping bottom using our numerical 
results. Contours of turbulent kinetic energy k are shown in Fig. 6 at different phases. 
The initial phases is set as the wave crest passes the breaking point, i.e. x = 6.4 m. It is 
found that the k is formed behind the wave crest. When it travels, the wave becomes 
steeper and k increases gradually. We also found that there is substantial turbulent 
kinetic energy generated at the solid boundary associated with the wave crest. Under the 
spilling breaking wave, the turbulent kinetic energy continues to dissipate in the bore 
region. This is due to the high shear rates at the wavefront which generates significant 
levels of k at the lower front face of the wave. After that, the production of k continues 
as the wave transforms into a bore and overtakes the decaying turbulence from the 
previous breaking wave. 

Figs. 7 and 8 present the sequence of variation of the simulated streamlines and 
vorticity fields for case B of bar type bottom in a wave period. The vorticity is 
calculated by the following equation / /U z W xΩ = ∂ ∂ − ∂ ∂ . In Fig. 7, the wave profile 
at the recovery stage is quite different from that expected for a spilling breaker. The 
wave crest of recovery wave is much flatter with a relatively mild leading wavefront. 
Fig. 8 shows that the vorticity generated by waves is initiated at the wavefront just 
before the breaking point for both the first and second breaking scenarios. It is noted 
that the computed vorticity in the second breaking is larger that in the first breaking. 

6. CONCLUDING REMARKS 
A two-dimensional free-surface flow model used in this study is established 

bydirectly solving Reynolds averaged Navier-Stokes (RANS) equations and the 
continuity equation. The VOF/PLIC and embedding method are adopted to track the 
free surface and to treat the complex solid boundary on a Cartesian grid, respectively. 
An explicit numerical algorithm is employed with a predictor-corrector procedure of 
pressure and velocity field. By applying the developed model to the problems of 
periodic waves breaking on different types of sloping bottom, we found that the model 
results compare well with the experimental data. Additionally, it is demonstrated to 
provide reliable information concerning wave breaking and wave recovery on a 
composite slope bottom. 

Detailed analysis of numerical results also shows that the turbulent kinetic energy 
and vorticity are primarily located above the wave trough. The turbulent kinetic energy 
is convected and diffused to the back face of the wave, and continues to dissipate while 
the breaking wave moves towards the shore. As the second wave breaking takes place 
after the recovery of wave energy, noted that the vorticity in the bore region is larger 
than those in other regions. 
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Fig6. Sequence of variation of the simulated turbulent kinetic 
 energy for case A in a wave period 

 
 

 
 

Fig7. Sequence of variation of the simulated streamlines for case B in a wave period 
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Fig8. Sequence of variation of the simulated vorticity fields for case B in a wave period 
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